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Early exposure to the steroid sex hormone testosterone and its estrogen metabolite estradiol
masculinize neural tissue during a developmental critical period. Many aspects of neuron anatomy
and physiology are permanently altered, including later sensitivity to estradiol. Although it is well
established that early hormone exposure alters neuronal responsiveness regarding classical estra-
diol actions (i.e. acting via nuclear estrogen receptors), it has not yet been determined whether it
also alters neuronal processing of nonclassical estrogen receptor signaling, including the actions
of membrane-associated estrogen receptors. Hence, we tested whether membrane estrogen re-
ceptor regulation of cAMP response element binding protein (CREB) phosphorylation observed in
female (but not male) hippocampal pyramidal neurons is due to the lack of androgen and/or
estrogen exposure in females during this critical period. Female rat neonates on postnatal d 0 and
1 were systemically injected with one of four compounds: vehicle, testosterone, the nonaroma-
tizable androgen dihydrotestosterone, or estradiol. On postnatal d 2, primary hippocampal neuron
cultures were generated from these animals. After 8–9 d in culture, we assessed whether estradiol
affected CREB phosphorylation. Neurons from female neonates exposed to testosterone lacked
estradiol signaling to CREB. In contrast, dihydrotestosterone injections of female neonates did not
disrupt estradiol regulation of CREB. Estradiol injections of female neonates, however, eliminated
estradiol signaling to CREB. These findings indicate that testosterone aromatization to estradiol
leads to a masculinization/defeminization process whereby hippocampal neurons fail to exhibit
rapid estradiol signaling to CREB. Broadly, these findings extend the organizational and aroma-
tization hypotheses to rapid, nonclassical hormone action. (Endocrinology 153: 4616–4621, 2012)

Early exposure to steroid sex hormones can masculin-
ize/defeminize neural tissue. For example, in male ro-

dents, the testes elevate plasma testosterone levels both in
utero and in neonates. Testosterone can directly act on an-
drogen receptors or can be metabolized to estradiol, activat-
ingestrogenreceptors (ER). StimulationofandrogenandER
during development can masculinize neural substrates dur-
ing a brief critical period; this is referred to as the organiza-
tional/aromatization hypothesis (1–3). This process, along
withneurosteroidsandgeneticandenvironmental influences
(4), creates sexually dimorphic neural tissue.

Neuron anatomy and physiology can be sexually di-
morphic. This includes adult responsiveness to steroid
sex hormones such as estradiol. Thus far, studies of
development-induced sex differences in estradiol sig-
naling have largely focused on the classical estradiol
action of binding to nuclear-localized ER to directly
affect gene expression. Although it is established that
early hormone exposure can alter future responsiveness
to classical estradiol action, it is unclear whether early
hormone exposure can also impact future neuron re-
sponsiveness to nonclassical estradiol actions, due to
membrane-associated ER (5, 6).
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Here we test this hypothesis, using a well-studied,
sexually dimorphic, nonclassical estradiol action in hip-
pocampal neurons. In female but not male hippocampal
pyramidal neurons, estradiol rapidly modulates cAMP re-
sponse element binding protein (CREB) phosphorylation
(7, 8). This occurs via direct coupling of membrane-asso-
ciated ER� and -� to metabotropic glutamate receptors
(mGluR), leading to estradiol-induced mGluR signaling
(schematized in Ref. 6). Female rat neonates were injected
once daily for 2 d with vehicle, testosterone, the nonaro-
matizable androgen dihydrotestosterone, or estradiol.
Twenty-four hours after the second injection, hippocam-
pal neuron cultures were generated. Using these cultures,
we assessed whether hippocampal pyramidal neurons ex-
hibited membrane ER/mGluR signaling to CREB. Neu-
rons from female pups exposed to vehicle exhibited rapid
estradiol action,whereasneurons frommalepups exposed
to vehicle did not. Neurons from female pups neonatally
exposed to testosterone lacked rapid estradiol action. In
contrast, neurons from female pups neonatally exposed to
dihydrotestosterone exhibited rapid estradiol action.
Neurons from female pups neonatally exposed to estra-
diol, however, lacked rapid estradiol action. Direct
mGluR signaling to CREB was unaffected by neonatal
hormone exposure. Collectively, these findings indicate
that aromatization of testosterone to estradiol leads to a
masculinization/defeminization process, whereby hip-
pocampal neurons lose membrane-associated ER signal-
ing. Broadly, these results demonstrate that early hormone
exposure contributes to sex differences not only in nuclear
ER but membrane ER signaling as well.

Materials and Methods

Animals
All protocols were approved by the Animal Care and Use

Committee at the University of Minnesota. Female and male
Sprague-Dawley rats were born from timed-pregnant females
purchased from Harlan (Indianapolis, IN). Animals were housed
with their littermates and dam. On postnatal d 0 and 1, following
a well-established protocol (9), female pups received a sc injec-
tion (0.1 ml) of either cottonseed oil (vehicle) or oil containing
100 �g testosterone, estradiol, or dihydrotestosterone. Male
pups received cottonseed oil. Each group contained two to four
pups, and each experiment was replicated at least three times
across different dams and litters.

Cell culture
On postnatal d 2, animals were killed, and hippocampal neu-

rons were cultured using previously described techniques (8).
Cultures were prepared in parallel from male and female pups,
or oil- and hormone-injected pups, obtained from the same litter.

Drugs
Tetrodotoxin, D(�)-2-amino-5-phosphonopentanoic acid,

(S)-3,5-dihydroxyphenylglycine (DHPG), 17�-estradiol, and
(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) were
from Tocris (Ellisville, MO). Testosterone and dihydrotestos-
terone were from Steraloids (Newport, RI).

Immunocytochemistry
Immunocytochemistry protocols followed those described

previously (8, 10). Neurons (8–9 d in vitro) were incubated in a
Tyrode’s solution containing tetrodotoxin (1 �M) and D(�)-2-
amino-5-phosphonopentanoic acid (25 �M) at room tempera-
ture for 1.5–2.0 h. Cell stimulations were performed as follows:
vehicle for 10 min, 1 nM estradiol for 5 min, 50 �M DHPG for 5
min, 10 �M APDC for 5 min, 20 mM K� for 3 min, estradiol or
APDC for 5 min, and then estradiol or APDC and 20 mM K� for
3 min. Cells were fixed using ice-cold 4% paraformaldehyde
(Electron Microscopy Sciences, Fort Washington, PA) in PBS
containing 4 mM EGTA. Cells were washed in PBS, permeabil-
ized with 0.1% Triton X-100 (VWR Scientific, West Chester,
PA), washed, and blocked at 37 C for 30 min in PBS containing
1% BSA and 2% goat serum (Jackson ImmunoResearch, West
Grove, PA). The cells were incubated at 37 C for 1 h in block
containing a monoclonal antibody directed against serine 133
phosphorylated CREB (pCREB) (1:1000, 05-667; Upstate Bio-
technology, Lake Placid, NY) and a polyclonal antibody target-
ing microtubule-associated protein 2 (MAP2) (1:1000, AB5622;
Calbiochem, La Jolla, CA). Cells were washed and incubated for
1 h at 37 C in block solution containing fluorescein isothiocya-
nate- and cyanine 5 (Jackson ImmunoResearch) or Alexa Fluor
488-conjugated antirabbit and 635-conjugated antimouse (In-
vitrogen, Carlsbad, CA) secondary antibodies for visualization
of MAP2 and pCREB, respectively. Cells were washed and
mounted using Citifluor (Ted Pella, Redding, CA). Nuclear flu-
orescent intensities for pCREB were acquired using a Leica
DM5500Q confocal system or a Yokogawa spinning-disc con-
focal system. Data acquired from the Yokogawa system were
quantified using MetaMorph (version 6.0; Universal Imaging,
Downingtown, PA). Data from the Leica were quantified with
Leica LAS AF (version 1.9.0; Leica, Buffalo Grove, IL). The same
antibodies and imaging system were used for all cells within an
experiment. Experimental conclusions were not altered by these
differences.

Following established protocols (8), the confocal excitation
and detection settings for each experiment were determined us-
ing 20 mM K�-stimulated coverslips. Inter-coverslip variability
was accounted for by subjecting two coverslips to each treat-
ment. Neurons were selected randomly across both coverslips
using MAP2 fluorescence, allowing blind acquisition of pCREB
intensities. Data acquisition order was random. Images were
captured through the approximate midline of each cell. During
data analysis, MAP2 staining was used to draw a region of in-
terest outlining the nucleus of each neuron, blinding analysis of
pCREB intensity. The region of interest was then transferred to
the pCREB image, and average fluorescence intensities within
the nucleus were recorded. Background from a region of the
image not containing pCREB fluorescence was subtracted from
the average pCREB fluorescence.
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Statistics
Experiments were analyzed using one-way ANOVAs and

Tukey’s post hoc test (Prism version 5.00; GraphPad Software,
La Jolla, CA). Statistical differences between groups are depicted
within each figure as different alphabetical characters. P val-
ues � 0.05 were considered a priori as significant. Data are pre-
sented as mean � SEM.

Results

Only hippocampal neurons from females exhibit
rapid estradiol regulation of CREB phosphorylation

Estradiol rapidly phosphorylates CREB in female hip-
pocampal pyramidal neurons, and preexposure to estra-
diol attenuates CREB phosphorylation induced by the de-
polarizing action of 20 mM K� (8). These rapid estradiol
effects are mediated through membrane-associated ER

coupling to mGluR and are not ob-
served in neurons from males (7, 8). For
our first experiment, we verified that
neonatal oil injections would not affect
this outcome. We injected male and fe-
male littermate rats with vehicle on
postnatal d 0 and 1 and then cultured
hippocampal pyramidal neurons on d
2. After 8–9 d in culture, we assessed
neuronal responsiveness to estradiol,
examining changes in CREB phosphor-
ylation using the following treatments:
vehicle, estradiol, 20 mM K�, or estra-
diol with 20 mM K� (Fig. 1A). In neu-
rons from female animals [Fig. 1B;
F(3,116) � 70.38, P � 0.0001], exposure
to estradiol increased CREB phosphor-
ylation compared with vehicle (P �
0.001). Estradiol also attenuated 20
mM K�-induced CREB phosphoryla-
tion compared with 20 mM K� alone
(P � 0.01). Neurons from male animals
did not respond to estradiol either un-
der baseline or 20 mM K� conditions
[Fig. 1C; F(3,118) � 47.12, P � 0.0001].

Neonatal exposure to
testosterone eliminates rapid
estradiol action

This sexually dimorphic sensitivity
to estradiol could be organized early in
life by hormone exposure, by a genetic
program independent of early hormone
exposure, or by environmental factors.
To differentiate between these options,
we followed the same experimental

timeline as above, this time with neonatal injections of
vehicle or testosterone. We reasoned that if in males neo-
natal exposure to masculinizing doses of testosterone
eliminates later responsiveness to estradiol, then a similar
treatment in females should also eliminate rapid estradiol
action.

Neonatal testosterone exposure eliminated rapid estra-
diol action [Fig. 1D; F(3,117) � 155.0, P � 0.0001]. In
neurons from females exposed to testosterone, estradiol
did not increase CREB phosphorylation and did not at-
tenuate 20 mM K�-induced CREB phosphorylation. This
is in contrast to neurons from females neonatally exposed
to vehicle [F(3,121) � 41.93, P � 0.0001]. These results
support the hypothesis that membrane-associated ER sig-
naling is lost upon early hormone exposure.

FIG. 1. Rapid, nonclassical estradiol action on CREB phosphorylation is sex specific and is
regulated by early hormone exposure. A, Example confocal images of cultured hippocampal
neurons immunolabeled with MAP2 (green) and pCREB (red). Exposure to estradiol (E) rapidly
increased CREB phosphorylation and decreased 20 mM K�-induced CREB phosphorylation in
female neurons. Treatments were as follows: top left, vehicle; top right, estradiol; bottom left,
20 mM K�; bottom right, estradiol and 20 mM K�. Scale bar, 25 �m. B, Quantification of
rapid estradiol modulation of CREB phosphorylation in female neurons. C, Estradiol exposure
has no effect in male neurons. D, Neonatal exposure to testosterone (T) eliminates later
responsiveness to rapid estradiol action in female neurons. E, Neonatal exposure to
testosterone’s nonaromatizable, androgenic metabolite dihydrotestosterone (DHT) does not
eliminate later responsiveness to rapid estradiol action in female neurons. F, Neonatal
exposure to testosterone’s estrogenic metabolite estradiol eliminates later responsiveness to
rapid estradiol action in female neurons. Letters within each bar indicate statistically
significantly different groups; complete statistical information is in Results.
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Neonatal exposure to dihydrotestosterone does
not eliminate rapid estradiol action

In the brain, testosterone can act directly on androgen
receptors or be metabolized into other hormones. These
include dihydrotestosterone and estradiol. Dihydrotestos-
terone is a potent, nonaromatizable androgen that binds
to androgen receptors, whereas estradiol binds to ER. To
determine whether the effects of testosterone were due to
activation of androgen receptors, we again followed the
same experimental timeline, with neonatal injections of
vehicle or dihydrotestosterone.

Neonatal exposure to dihydrotestosterone did not
eliminate rapid estradiol action [Fig. 1E; F(3,118) � 72.97,
P � 0.0001]. In neurons from females neonatally exposed
to dihydrotestosterone, exposure to estradiol increased
CREB phosphorylation compared with vehicle (P �
0.001) and attenuated 20 mM K�-induced CREB phos-
phorylation compared with 20 mM K� alone (P � 0.001)
Similar effects of estradiol were observed in neurons from
vehicle-treated animals [F(3,116) � 70.38, P � 0.0001].
These results indicate that the organizational effect of
early exposure to testosterone on hippocampal neuron
estradiol sensitivity is not mediated via androgen
receptors.

Neonatal exposure to estradiol eliminates rapid
estradiol action

Given that testosterone can also be metabolized into
estradiol, we next tested the role of early ER activation.
We followed the same experimental timeline as above,
with neonatal injections of vehicle or estradiol.

Neonatal estradiol exposure eliminated rapid estradiol
action [Fig. 1F; F(3,128) � 57.87, P � 0.0001]. In neurons
from females neonatally exposed to estradiol, exposure to
estradiol did not increase CREB phosphorylation com-

pared with vehicle (P � 0.05) and estradiol did not atten-
uate 20 mM K�-induced CREB phosphorylation com-
pared with 20 mM K� alone (P � 0.05). This is in contrast
to the neurons obtained from females exposed to vehicle,
which showed normal responses to estradiol [F(3,117) �
25.21, P � 0.0001]. These results support the hypothesis
that sex differences in estradiol responsiveness are gener-
ated by activation of ER.

mGluR signaling is unaffected by neonatal
exposure to testosterone

In both males and females, mGluR activation regulates
CREB phosphorylation. Only in females, however, are
membrane-associated ER functionally coupled to mGluR
(7, 8). The hormone manipulations employed here elim-
inate this membrane-associated ER signaling in females.
Our interpretation of these data is that the early hormone
exposure is masculinizing/defeminizing the females by in-
ducing a male-like phenotype: i.e. eliminating membrane-
associated ER coupling to mGluR. If this interpretation is
correct, then the direct mGluR pathway to CREB would
remain intact in the masculinized/defeminized females.

To test this hypothesis, we neonatally injected females
with either vehicle or testosterone and then assessed neu-
ronal sensitivity to the group I mGluR agonist DHPG and
the group II mGluR agonist APDC on d 8 or 9. Neonatal
exposure to vehicle did not eliminate ER or group I mGluR
signaling [Fig. 2A; F(2,109) � 9.143, P � 0.0002]. In con-
trast, neonatal exposure to testosterone eliminated estra-
diol signaling without affecting group I mGluR signaling
[Fig. 2B; F(2,108) � 17.34, P � 0.0001]. Similar results
were obtained regarding group II mGluR signaling. Neo-
natal exposure to vehicle did not eliminate estradiol or
group II mGluR signaling [Fig. 2C; F(4,146) � 35.80, P �
0.0001]. However, neonatal exposure to testosterone

FIG. 2. Neonatal exposure to testosterone (T) does not affect mGluR signaling. A, Neonatal exposure to oil does not affect group I mGluR
signaling induced by the agonist DHPG or rapid estradiol (E) action in female neurons; B, neonatal exposure to testosterone does not eliminate
group I mGluR signaling but does eliminate rapid estradiol action in female neurons; C, neonatal exposure to oil does not eliminate group II mGluR
signaling induced by the agonist APDC (AP) in female neurons; D, neonatal exposure to testosterone does not affect group II mGluR signaling but
does eliminate rapid estradiol action on pCREB intensity induced by 20 mM K�. Letters within each bar indicate statistically significantly different
groups; complete statistical information is in Results.
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eliminated estradiol signaling without affecting group II
mGluR signaling [Fig. 2D; F(4,160) � 47.77, P � 0.0001].
Overall, these data indicate that mGluR signaling to
CREB is intact in masculinized/defeminized females, sup-
porting the hypothesis that neonatal hormone exposure
specifically modulates membrane ER signaling.

Discussion

There are five principle findings of these experiments.
First, rapid, nonclassical estradiol modulation of CREB
phosphorylation occurs in female but not male hippocam-
pal pyramidal neurons. Second, hippocampal pyramidal
neurons from female neonates exposed to testosterone
lacked estradiol signaling to CREB. Third, dihydrotestos-
terone injections of female neonates did not disrupt estra-
diol regulation of CREB. Fourth, estradiol injections of
female neonates eliminated estradiol signaling to CREB.
Finally, masculinization/defeminization does not affect
mGluR signaling. Collectively, these experiments demon-
strate that the organizational effects of early hormone ex-
posure apply to rapid, nonclassical estradiol action.

Nonclassical estradiol action has been known since at
least the 1960s, when Szego and Davis (11) demonstrated
that within seconds, estradiol increased cAMP accumula-
tion in uterine tissue. Later, in neurons, Kelly and col-
leagues (12) showed that estradiol could rapidly affect
neuron electrophysiological properties. These discoveries
were roughly in parallel with those delineating classical
estradiol actions via ER acting in the nucleus to affect gene
transcription via estrogen response elements (6, 13). Al-
though initially controversial, today, it is well accepted
that estradiol rapidly modulates neuronal electrophysio-
logical properties (14–16). It is also definitive that estra-
diol can induce second messenger signaling pathways
more commonly associated with G protein-coupled recep-
tors to modify cellular physiology, gene transcription, and
even anatomy (6, 13, 17–20). Indeed, nonclassical estra-
diol action can masculinize neural tissue (21). Here, we
have chosen to work with rapid, nonclassical estradiol
modulation of CREB phosphorylation in hippocampal
pyramidal neurons (8). In female but not in male neurons,
this modulation occurs via membrane-associated ER� and
-� that couple to mGluR (schematized in Ref. 6). This
coupling is widespread across the nervous system, includ-
ing hippocampal (8, 22), striatal (23), cortical (24), arcu-
ate (25), and dorsal root ganglion neurons (26) as well as
hypothalamic astrocytes (27).

This association between membrane ER and mGluR, as
well as other G proteins, occurs in brain regions that also
express nuclear-localized ER that operate via the classical

mechanism. This integration allows estradiol to not only
slowly change gene expression but also exert influence
over the functions typically ascribed to G protein-coupled
receptors. This spectrum of estradiol action could thus
potentially act in parallel to modulate neuron function
(28). Examples of this include the arcuate nucleus/medial
preoptic nucleus circuit, where rapid estradiol signaling
facilitates classical nuclear ER action via mGluR stimula-
tion (13, 25), experiments using the membrane-ER-
knockout mouse, which found that normal development
requires both membrane and nuclear ER (29), and te-
leosts, where rapid steroid hormone-specific modulation
of a neural circuit controlling vocal behavior differs be-
tween sexes (30).

These complementary actions of classical and nonclas-
sical estradiol signaling suggest that common develop-
mental mechanisms underlie sexual dimorphisms in the
diverse spectrum of estradiol action. Supporting this, use
of the four core genotypes of mice (31) indicated that the
sexuallydimorphicnonclassical responseofhypothalamic
astrocytes to estradiol was dependent upon gonadal but
not chromosomal sex (32). This implicates early hormone
exposure, foreshadowing the conclusions presented here.
It does not necessarily follow, however, that all sexually
dimorphic sensitivity to nonclassical hormone signaling is
organized by early hormone exposure. This is only one of
several possible mechanisms, with others including neu-
rosteroids and genetic and environmental influences (4).
Thus, thedevelopmentaloriginof sexuallydimorphicphe-
nomenon must continue to be evaluated on a case-by-case
basis.
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