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Abstract Sex differences are widespread across verte-

brate nervous systems. Such differences are sometimes

reflected in the neural substrate via neuroanatomical dif-

ferences in brain region volume. One brain region that

displays sex differences in its associated functions and

pathologies is the striatum, including the caudate-putamen

(dorsal striatum), nucleus accumbens core and shell (ven-

tral striatum). The extent to which these differences can be

attributed to alterations in volume is unclear. We thus

tested whether the volumes of the caudate-putamen,

nucleus accumbens core, and nucleus accumbens shell

differed by region, sex, and hemisphere in adult Sprague–

Dawley rats. As a positive control for detecting sex dif-

ferences in brain region volume, we measured the sexually

dimorphic nucleus of the medial preoptic area (SDN-POA).

As expected, SDN-POA volume was larger in males than

in females. No sex differences were detected in the vol-

umes of the caudate-putamen, nucleus accumbens core or

shell. Nucleus accumbens core volume was larger in the

right than left hemisphere across males and females. These

findings complement previous reports of lateralized

nucleus accumbens volume in humans, and suggest that

this may possibly be driven via hemispheric differences in

nucleus accumbens core volume. In contrast, striatal sex

differences seem to be mediated by factors other than

striatal region volume. This conclusion is presented within

the context of a detailed review of studies addressing sex

differences and similarities in striatal neuroanatomy.

Keywords Striatum � Caudate-putamen � Dorsal
striatum � Ventral striatum � Volume � Nucleus accumbens �
Sex � Hemisphere � Lateralization

Introduction

Sex differences in the nervous system are found in many

brain regions and animal taxa. These differences can be

reflected by the neural substrate in several forms, including

its fundamental neuroanatomy (Cahill 2006; Tommasi

2009). Sometimes these neuroanatomical differences are

quite dramatic, with robust variation in the overall volume

of the relevant brain region. Examples include the sexually

dimorphic nucleus of the preoptic area (SDN-POA)

(Gorski et al. 1980), the spinal nucleus of the bulbocav-

ernosus (SNB) (Breedlove and Arnold 1981), the medial

amygdala (Hines et al. 1992; Cooke and Woolley 2005),

and the telencephalic song control nuclei in sexually

dimorphic songbirds (Nottebohm and Arnold 1976; Suthers

1997). Another brain region that displays sex and hemi-

spheric differences in its neural properties and associated

functions and pathologies is the mammalian striatum,

comprising the caudate-putamen (also called dorsal stria-

tum), nucleus accumbens core, and nucleus accumbens

shell (ventral striatum) (Calhoun 1962; Zimmerberg et al.

1974; Glick and Ross 1981; Castellano et al. 1987, 1989;

McDermott et al. 1994; Eckel et al. 2000; Scholz et al.

2000; Becker 2002; Davis et al. 2005; Zurkovsky et al.
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2007; Becker and Hu 2008; Capper-Loup and Kaelin-Lang

2008; Capper-Loup et al. 2009; Carroll and Anker 2010;

Kloppel et al. 2010; Meitzen et al. 2011; Bobzean et al.

2014; Fattore et al. 2014; Hosseini-Kamkar and Morton

2014; Yoest et al. 2014). Currently, the extent to which

striatal sex differences can be attributed to underlying

variation in neuroanatomical volume is unclear. In the rat,

only the volume of the nucleus accumbens core has been

compared between males and females (Wissman et al.

2012). This is a particularly relevant question as it directly

contributes to understanding the documented sex differ-

ences and steroid sex hormone actions in striatal electro-

physiological properties (Dorris et al., 2015), dendritic

spine and excitatory synapse properties (Forlano and

Woolley 2010; Staffend et al. 2011; Wissman et al. 2011;

Peterson et al. 2015), gene expression (Chen et al. 2009;

Trabzuni et al. 2013; Ghahramani et al. 2014), and steroid

sex hormone and catecholamine action (Becker 1990; Di

Paolo 1994; Mermelstein et al. 1996; Xiao and Becker

1998; Walker et al. 2000; Hu et al. 2006; Becker and Hu

2008; Dluzen and McDermott 2008; Schultz et al. 2009;

Grove-Strawser et al. 2010).

We tested whether the volumes of the caudate-putamen,

nucleus accumbens core, and nucleus accumbens shell dif-

fered by region, sex, and hemisphere in adult gonadec-

tomized Sprague–Dawley rats. Gonadectomized rats were

used to avoid any potential confounds induced by circulating

steroid sex hormones, since striatal regions express mem-

brane-associated estrogen receptors a, b, and GPER-1

(Mermelstein et al. 1996; Kuppers and Beyer 1999; Schultz

et al. 2009; Grove-Strawser et al. 2010; Almey et al. 2012;

Almey et al. 2015). As a positive control for detecting sex

differences in volume, we measured the SDN-POA. As

expected, SDN-POA volume was larger in males than in

females. No sex differences were detected in the volumes of

the whole striatum, caudate-putamen, or nucleus accumbens

core or shell. Nucleus accumbens core volume was larger in

the right than left hemisphere. These findings extend previ-

ous reports of lateralized nucleus accumbens volume in

humans (Ahsan et al. 2007;Neto et al. 2008), and suggest that

this may be driven via hemispheric differences in nucleus

accumbens core volume. In contrast, striatal-associated sex

differences appear to be driven by factors other than gross

volume. The manuscript concludes with a detailed review of

studies of genetic sex and striatal region volume.

Materials and methods

Animals

The Institutional Animal Care and Use Committee at the

University of Minnesota approved all procedures in this

study. The tissue analyzed in this study was previously

acquired for an earlier study (Meitzen et al. 2011). Briefly,

four adult male and four adult female Sprague–Dawley rats

were purchased from Harlan Laboratories. Rats were

gonadectomized on day 60 of life at Harlan Laboratories.

The absence of gonads was verified post-mortem. It is

unknown whether rats were littermates. Food and water

were available ad libitum, and animals were maintained on

a 14-h light 10-h dark cycle in a climate controlled colony.

Brain histology and imaging

On day 75 of life, animals were deeply anesthetized using

pentobarbital (200 mg/kg, i.p.) and perfused transcardially

with saline until liver clearance, and then with 300 ml of

4 % paraformaldehyde over 12 min. The anticoagulant

heparin (0.5 ml of 1000 UPS units/ml) was injected into

the left ventricle prior to perfusion. Brains were post-fixed

overnight in 4 % paraformaldehyde at 4 �C, cryoprotected
in 30 % sucrose solution in 0.1 M phosphate-buffered

saline (PBS), and the sectioned coronally (50 lm) on a

freezing microtome. The right hemisphere of each brain

was nicked to distinguish hemispheres. Every section was

mounted onto slides and stained with cresyl violet. Sec-

tions containing the SDN-POA were imaged using a Leica

DM5000B light microscope coupled to a Q-imaging Retiga

2000R digital color camera. Sections containing the cau-

date-putamen and nucleus accumbens core and shell were

imaged using a LabX Northern Light R95 Lightbox cou-

pled to a Q-imaging 12-bit (mono) digital camera. Images

were acquired and processed using MCID Core 7.0 and

exported as TIFFs.

Stereology

Neuroanatomical boundaries of each brain region of

interest were traced from the photomicrographs using

ImageJ (NIH, Bethesda, MD). The volume of each region

of interest was estimated using Cavalieri’s principle

(Mayhew et al. 1990; Wissman et al. 2012). Volumes were

calculated using the formula for the volume of a cone

frustum (Smith et al. 1997). Anterior brain volume (the

region between Bregma ?3.215 mm to Bregma

-1.566 mm) was measured to control for differences in

brain size, section compression and/or tissue shrinkage

between subjects, following a previous study (Chakos et al.

1998). Anterior brain volume did not differ by sex (male:

363.3 ± 6.8 mm3; female: 373.8 ± 3.4; t(6) = 1.393;

p[ 0.05). Thus, presented volumes were not adjusted by

anterior brain size. The use of adjusted or non-adjusted

volumes did not alter overall experimental conclusions. We

note that all brains underwent the same histological

preparation in parallel, and that the hypotheses in this study
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compared differences between groups internal to the study,

as recommended for non-adjusted volumetric measure-

ments (Mayhew et al. 1990). The SDN-POA was defined as

a dense cluster of neurons lateral to the third ventricle in

the preoptic area, inferior to the anterior commissure,

superior to the suprachiasmatic nucleus, and rostral to the

paraventricular nucleus (Gorski et al. 1980; Bleier et al.

1982). SDN-POA measurements were only made from the

left hemisphere. Measurements of the caudate-putamen

were made from Bregma ?2.474 mm to Bregma

-1.566 mm and measurements of the nucleus accumbens

from Bregma ?3.125 mm to Bregma ?0.485 mm. For

striatal brain regions volume was calculated separately for

both the left and right hemispheres. The borders of the

dorsal striatum, nucleus accumbens core and shell were

defined following the rat brain atlas (Paxinos et al. 2008),

following previous studies (Meitzen et al. 2011). Overall

volumes were similar to measurements of previous studies,

validating this approach (Fig. 1). We note that the use of

immunohistochemical staining can aid in the identification

of striatal region borders, including tyrosine hydroxylase,

calbindin, and calretinin (Seifert et al. 1998; Brauer et al.

2000; Paxinos et al. 2008). All measurements and

calculations of brain volumes were conducted blind to sex,

and a subset of tissue was measured by two independent

observers and the same observer multiple times as internal

controls for measurement accuracy.

Statistics

We performed a two-tailed t test to assess SDN-POA

volume, a one-way repeated measures ANOVA with

Bonferroni post-tests to make comparisons between striatal

regions regardless of hemisphere and sex, and two-way

repeated measures ANOVA with Bonferroni’s post-tests to

make comparisons between sex and hemisphere within

each striatal region. Software used was Prism 5.0 (Graph-

Pad, La Jolla, CA). Probability values less than 0.05 were

considered a priori as significant. Data are presented as

mean ± SEM.

Literature search

The literature search was conducted in PubMed, and

included articles with publications dates between 1992 and

2015. Search terms used were ‘‘striatum’’ AND ‘‘sex

500 μm Bregma 1.80 mm
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Fig. 1 Controls for volumetric measurements of sex differences and

striatal regions. a Volumetric measurements of the sexually dimor-

phic nucleus of the medial preoptic area (SDN-POA). Left micro-

graphs of male and female SDN-POA (scale bar 186 lm). Right as

expected, the volume of the SDN-POA was larger in males (M) than

in females (F) (p\ 0.05). b Striatal region volumes considered

independently of sex and hemisphere. Left schematic of caudate-

putamen (CPu), nucleus accumbens core (NAc) and nucleus accum-

bens shell (NAs) (scale bar 500 lm). Right all measured volumes

were consistent with those reported from earlier studies. The volume

of the caudate-putamen was larger than that of the nucleus accumbens

core and shell (p\ 0.0001). The volumes of the nucleus accumbens

core and shell did not differ significantly from each other (p[ 0.05)
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difference’’, ‘‘caudate putamen’’ AND ‘‘sex difference’’,

‘‘caudate’’ AND ‘‘sex difference’’, ‘‘putamen’’ AND ‘‘sex

difference’’, or ‘‘nucleus accumbens AND ‘‘sex differ-

ence’’. Articles were included in the review if they ana-

lyzed the following neuroanatomical attributes by sex:

volume and/or dimensionality, soma size, cell density (any

aspect, including cell death counts), dendrites (including

dendritic spine characteristics and chemical synapse

markers), and afferent and efferent striatal anatomical

projections. Excluded articles were those that were not in

English, were conference proceedings or literature reviews,

were not peer-reviewed, and whose subject purely involved

pathologies, drug administration or recently reviewed

topics such as neuromodulator/hormone action (most

prominently dopamine and estradiol) (Carroll and Anker

2010; Becker et al. 2013; Yoest et al. 2014).

Results

SDN-POA volume is larger in males than females

We first performed a positive control for detecting sex

differences in brain region volume by measuring the SDN-

POA, which in rats is typically 2–3 times larger in males

than in females (Gorski et al. 1980; Bleier et al. 1982).

Consistent with earlier studies, SDN-POA volume

was *2.3 times larger in males than in females (Fig. 1a;

p\ 0.05 t(6) = 2.513). This finding indicates that a sex

difference in brain region volume can be detected using the

tissue and techniques available for this study.

Caudate-putamen, nucleus accumbens core

and shell volumes are similar to those reported

by previous studies

As an additional control of experimental technique, we also

compared the overall volumes of striatal regions indepen-

dently of sex and hemisphere (Table 1). As expected, the

volume of the caudate-putamen was larger than that of both

the nucleus accumbens core and shell (Fig. 1b; p\ 0.0001,

F(2,23) = 713.2). The present study’s measurement of

caudate-putamen volume was 30.72 ± 1.07 mm3, similar

to measurements from previous studies (Anden et al. 1966;

Fentress et al. 1981; Oorschot 1996; Chakos et al. 1998;

Roberts 2001; Andersson et al. 2002; Hsu et al. 2010).

Regarding the nucleus accumbens, the measured volumes

of the total nucleus accumbens (5.08 ± 0.53 mm3) and the

nucleus accumbens core (2.51 ± 0.09 mm3) are also sim-

ilar to those reported from previous studies (McClure et al.

2004; Wissman et al. 2012). The volumes of the nucleus

accumbens core and shell did not differ significantly from

each other (Fig. 1b). Collectively these measurements

confirm that striatal region volumes considered

Table 1 Measurements and

statistics of striatal region

volumes

Volume Caudate-putamen Nucleus accumbens core Nucleus accumbens shell

Global 30.7 – 1.1a 2.5 – 1.1b 2.5 – 0.1b

Statistics F2,23 = 713; p < 0.0001 F2,23 = 713; p < 0.0001 F2,23 = 713; p < 0.0001

Sex

M 31.1 ± 2.2; 2.6 ± 0.1 2.4 ± 0.1

F 30.4 ± 0.5 2.4 ± 0.1 2.6 ± 0.2

Statistics F1,15 = 1.21; p = 0.313 F1,15 = 1.00; p = 0.355 F1,15 = 1.63; p = 0.249

Hemisphere

L 31.0 ± 1.2 2.3 – 0.1 2.5 ± 0.1

R 30.4 ± 1.0 2.7 – 0.1 2.5 ± 0.1

Statistics F1,15 = 1.13; p = 0.329 F1,15 = 12.59; p = 0.012 F1,15 = 0.01; p = 0.933

Sex 9 hemisphere

ML 31.1 ± 2.5 2.4 ± 0.0 2.5 ± 0.1

MR 31.0 ± 2.5 2.9 ± 0.2 2.5 ± 0.1

FL 31.1 ± 2.0 2.2 ± 0.1 2.7 ± 0.2

FR 30.0 ± 0.7 2.5 ± 0.2 2.6 ± 0.2

Statistics F1,15 = 1.21; p = 0.313 F1,15 = 1.00; p = 0.355 F1,15 = 1.63; p = 0.249

Striatal region volume is presented in mm3. Bold indicates a significant finding. In the Global section,

different superscript letters denote significant differences across striatal regions. A one-way repeated

measures ANOVA was used to compare values across the caudate-putamen, nucleus accumbens core and

shell (‘‘Global’’ row). A two-way repeated measures ANOVA was used to test the contributions of sex,

hemisphere, and the interaction of sex and hemisphere for the volumes of individual striatal regions.

M male, F female, L left, R right
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independently of hemisphere and sex follow expected

relationships and ranges derived from previous studies.

Hemispheric but not sex differences in select striatal

region volumes

We then tested whether striatal volumes differed by

hemisphere and sex (Table 1). No differences in striatal

region volumes were detected between sex or the interac-

tion between sex and hemisphere (Fig. 2a–c). Regarding

hemisphere, the volume of the nucleus accumbens core was

larger in the right compared to left hemisphere in both

sexes (Fig. 2b; p\ 0.02; F = 12.59). Similarly, the vol-

ume of the total nucleus accumbens was lateralized in the

same direction (left 4.9 ± 0.1 mm3, right 5.3 ± 0.2 mm3;

p\ 0.03; F = 8.11). No difference between hemispheres

was detected in caudate-putamen (Fig. 2a) or the nucleus

accumbens shell (Fig. 2c). We conclude that there is evi-

dence suggesting that the volume of the nucleus accumbens

core is lateralized, and that there is no evidence for a sex

difference in the volume of any striatal region, extending

studies in other animals and striatal regions (Table 2).

Discussion

This study measured the overall volumes of rat caudate-

putamen, nucleus accumbens core, and nucleus accumbens

shell to determine whether these differed by sex or hemi-

sphere. Additionally, SDN-POA volume was measured as a

positive control for detecting sex differences in volume.

Overall volumes of striatal brain regions analyzed regardless

of sex or hemisphere were as expected from previous

studies, without consideration of sex or hemisphere. SDN-

POA volume was larger in males compared to females. No

sex differences were detected in the volumes of the caudate-

putamen, nucleus accumbens core or shell. Hemispheric

analysis suggests that nucleus accumbens core volume was

consistently larger in the right hemisphere. Here we discuss

these findings first in the context of sex differences, and then

with regards to hemispheric lateralization.

Sex differences in striatal-associated functions and

pathologies have been extensively studied, with sex differ-

ences occurring in motivated behaviors, sensorimotor and

learning tasks, responsiveness to drugs of abuse, and aspects

of Parkinson’s Disease (Becker 2002; Davis et al. 2005;

Haaxma et al. 2007; Zurkovsky et al. 2007; Becker and Hu

2008; Yoest et al. 2014). In certain other brain regions and/

or animals, sex differences in behavior are associated with

changes in overall neuroanatomical volume. Here we tested

whether this was the case for striatal regions, and found no

evidence for sex differences in overall volumes. These

results extend and complement the existing literature on sex

and estradiol-induced differences in striatal anatomical

properties by being the first to test whether rat caudate-

putamen and nucleus accumbens shell volume varies by sex

(Table 2). Additionally, these data confirm a previous report

that rat nucleus accumbens core volume does not differ
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Fig. 2 Striatal region volume was lateralized in the nucleus accum-

bens core but otherwise did not differ by sex or hemisphere. Left

striatal region volumes compared between males (M) and females (F).

Middle striatal region volumes compared between hemispheres in

individual males. (L left, R right). Right striatal region volumes

compared between hemispheres in individual females. a Caudate-

putamen. b Nucleus accumbens core. Nucleus accumbens core

volume was significantly larger in the right hemisphere compared to

the left in both males and females (p\ 0.02). c Nucleus accumbens

shell. Except for that noted above, for all comparisons p[ 0.05
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Table 2 Anatomical sex differences and estradiol sensitivity in striatal brain regions

Measurement Species Sex

difference

Hormone

exposure

References

Caudate-putamen

Volume Rat M = F This study

Volume Mouse (ABF2) M = Fa Rosen et al. (2009)

Volume Mouse (C57BL/6, BXD

RI, DBA/2J)

M = F Ahern et al. (2013), Rosen et al. (2009)

Volume Mouse (4CG) M > Fb Corre et al. (2014)

Soma size, neuron density Rat M = F Meitzen et al. (2011)

Dendritic spine density Hamster F only No Staffend et al. (2011)

Orbital frontal cortex
projections

Rat M < F Bayless and Daniel (2015)

Post-natal cell death Mouse (C57BL/6) M = F Ahern et al. (2013)

DFosB expression Rat M £ Fc Sato et al. (2011)

Caudate and/or Putamen

Volume Human M = F Ahsan et al. (2007), Brabec et al. (2003), Koikkalainen

et al. (2007), Jancke et al. (2015), Sato et al. (2014),

Hibar et al. (2015), Rijpkema et al. (2012)

Volume Human M > F Rijpkema et al. (2012), Raz et al. (1995), Tauscher-
Wisniewski et al. (2005)

Volume Human M < F Szabo et al. (2003), Giedd et al. (1997)

Volume (juvenile) Human M > F Goddings et al. (2014), Dennison et al. (2013)

Volume (juvenile) Human M = F Giedd et al. (1997)

Volume (juvenile global
striatum)

Human M > F Raznahan et al. (2014)

Embryonic striatum (global)

TH-IR fiber density

GABA-IR cell body density

Rat M < F Ovtscharoff et al. (1992)

Nucleus Accumbens (global)

Volume Rat M = F This study

Volume Mouse (California) M = F Campi et al. (2013)

Volume Human M = F Ahsan et al. (2007), Brabec et al. (2003), Jancke et al.

(2015), Rijpkema et al. (2012)

Volume Human (juvenile) M > F Goddings et al. (2014), Urosevic et al. (2014)

Volume Human (juvenile) M > F,
M < Fd

Dennison et al. (2013)

Dimensions Human M = Fe Mavridis et al. (2011)

Y’ Stereotactic coordinate Human M > Fe Mavridis et al. (2011)

Nucleus accumbens core

Volume Rat M = F This study, Wissman et al. (2012)

Soma size, neuron density Rat M = F Meitzen et al. (2011)

Soma Size Human M = F Sazdanovic et al. (2013)

Dendritic spine density Rat F only Yes, ; Peterson et al. (2015)

Dendritic spine density Hamster F only Yes, ; Staffend et al. (2011)

Dendritic spine density Rat M < F Forlano and Woolley (2010), Wissman et al. (2011,
2012)

Dendritic spine density Human M < F Sazdanovic et al. (2013)

Dendrite length Rat M = F Forlano and Woolley (2010)

PSD-95 puncta

VGLUT1 and VGLUT2

expression

Rat M = F Forlano and Woolley (2010)

TH-IR profiles Rat M = F Wissman et al. (2012), Forlano and Woolley (2010)

Large spines near TH-IR Rat M < F Wissman et al. (2012)

DFosB expression Rat M ‡ Fc Sato et al. (2011)
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between sexes (Wissman et al. 2012). Overall, this study

supports the conclusion that the gross anatomical properties

of the adult caudate-putamen, nucleus accumbens core and

shell largely do not differ by sex, with the possible exception

of volumetric changes during early development (Table 2).

We also note that there is some evidence of sex differences

in human caudate or putamen volume (Table 2) (Ruigrok

et al. 2014). Given the divergent results of these studies,

overall we conclude that there is little support for a signif-

icant sex difference in striatal region volume in adults.

Striatal soma size and neuron density do not differ by sex

(Meitzen et al. 2011). Instead, striatal neuroanatomical sex

differences are more commonly detected in microanatomy

such as dendritic spine density, and seem more robust in the

nucleus accumbens than in the caudate-putamen (Forlano

and Woolley 2010; Staffend et al. 2011; Wissman et al.

2011; Peterson et al. 2015), and possibly during adolescence

(Hammerslag and Gulley 2015). Notable neuroanatomical

information missing from the literature include studies

addressing sex differences (or lack thereof) in the anatomi-

cal projections to and from striatal regions, especially

regarding glutamatergic projections (Bayless and Daniel

2015). An exception to this is dopaminergic projections. In

adult nucleus accumbens core and shell there is no evidence

for sex differences in the magnitude of dopaminergic pro-

jections as assessed via TH-IR at the light and electron

microscopy levels (Forlano and Woolley 2010; Wissman

et al. 2012), though sex differences have been reported in

dopaminergic projections to non-striatal brain regions in

adult rodents (Kritzer and Creutz 2008). Dopaminergic

projections into adult caudate-putamen have not been

assessed, except within the context of Parkinson’s Disease

patients (Kotagal et al. 2013). However, in embryonic

striatum there is evidence for increased density of

dopaminergic fibers in females than in males (Ovtscharoff

et al. 1992). Collectively, this body of literature and the

present study indicate that striatal sex differences are likely

mediated via influences on the excitatory synaptic and

electrophysiological properties of striatal neurons and stri-

atal dopaminergic terminals (Mermelstein et al. 1996;

Wissman et al. 2011; Dorris et al. 2015; Tozzi et al. 2015).

This is most notable within the context of interactions

Table 2 continued

Measurement Species Sex

difference

Hormone

exposure

References

Nucleus accumbens shell

Volume Rat M = F This study

Soma size, neuron density Rat M = F Meitzen et al. (2011)

Soma size Human M = F Sazdanovic et al. (2013)

Dendritic spine density Rat F only Yes :, Nof Peterson et al. (2015)

Dendritic spine density Hamster F only No Staffend et al. (2011)

Dendritic spine density Rat M = Fg Forlano and Woolley (2010), Wissman et al. (2011)

Dendritic spine density Human M < F Sazdanovic et al. (2013)

Dendritic large spine density Rat M < F Forlano and Woolley (2010)

Dendrite length Rat M = F Forlano and Woolley (2010)

PSD-95 puncta volume Rat M < F Forlano and Woolley (2010)

TH-IR profiles

VGLUT1 and VGLUT2

Rat M = F Forlano and Woolley (2010)

DFosB expression Rat M ‡ Fc Sato et al. (2011)

Bold indicates a significant finding as defined by the cited study. Unbold indicate data not collected. All cellular-level measurements were

performed on medium spiny neurons

TH-IR tyrosine hydroxylase-immunoreactive, PSD-95 postsynaptic density protein-95, VGLUT vesicular glutamate transporter
a Mouse caudate-putamen volume was analyzed via t-test using supplemental data provided by Rosen et al. (2009)
b This study employed a false discovery rate of 10 % or less to determine significance. The false discovery rate-corrected p value was 0.092 for

gonadal sex for striatum
c Sato and colleagues further analyzed expression by regional anatomical location and cell expression subtype. Sex differences varied by these

attributes
d Result varied by hemisphere
e Mavridis and colleagues published two different studies of human nucleus accumbens dimensions in 2011. One study found no sex difference.

The other detected a sex difference in the Y’ stereotaxic coordinate, which was interpreted to indicate that the male nucleus accumbens

extends *1 mm more posterior than the female nucleus accumbens. Overall volume was not calculated
f Experiment 1 in this study did not show an effect of estradiol. However, experiment 2 did
g Forlano and Woolley (2010), found a trend toward a sex difference in the shell (p = 0.06)
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between estradiol and/or dopamine release, uptake and

receptors (Becker 1990; Di Paolo 1994; Mermelstein et al.

1996; Xiao and Becker 1998; Becker 1999; Walker et al.

2000; Hu et al. 2006; Schultz et al. 2009; Forlano and

Woolley 2010; Grove-Strawser et al. 2010; Staffend et al.

2011; Meitzen et al. 2013; Yoest et al. 2014; Peterson et al.

2015).

Analysis of hemispheric differences was initially inclu-

ded in this study because of the known lateralizations in the

mesostriatal dopaminergic system (Molochnikov and Cohen

2014), reports of lateralized sex differences in striatal

dopamine content (Robinson et al. 1980), and because lat-

eralized sex differences in volume have been detected in

other brain regions (Cooke 2006). No interactions, however,

were found between sex and hemisphere in the present study

(Table 1). A lateralization in nucleus accumbens core vol-

ume independent of sex was detected, with volumes con-

sistently larger in the right compared to the left hemisphere.

Similarly, the volume of the entire nucleus accumbens was

significantly larger in the right compared to the left hemi-

sphere. As far as we are aware, this is the first investigation in

rodents as to whether nucleus accumbens volume is poten-

tially lateralized, and the first report to suggest that this may

be due to differences specific to the nucleus accumbens core.

Multiple studies in humans have tested for hemispheric

differences in nucleus accumbens volume, with divergent

conclusions. Consistent with the data from the current study,

one study reported larger nucleus accumbens volume in the

right hemisphere in humans (Neto et al. 2008). In contrast, at

least two other studies reported larger nucleus accumbens

volumes in the left hemisphere in humans (Tamagaki et al.

2005; Ahsan et al. 2007). At least one study detected no

lateralization in human nucleus accumbens volume (Mamah

et al. 2007). Given the confusion regarding whether human

nucleus accumbens volume is lateralized, and that overall

nucleus accumbens structure may be susceptible to envi-

ronmental influences such as stress, drug exposure and dis-

ease (McClure et al. 2004; Mamah et al. 2007; Gilman et al.

2014), broad interpretations regarding nucleus accumbens

lateralizations in both humans and rodents should be

cautious.
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