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A B S T R A C T

17β-estradiol can rapidly modulate neuron function via membrane estrogen receptors (ERs) in a sex-specific
manner. For example, female rat hippocampal neurons express palmitoylated versions of ERα and ERβ that
associate with the plasma membrane. These membrane-associated ERs are organized by caveolin proteins into
functional signaling microdomains with metabotropic glutamate receptors (mGluRs). ER/mGluR signaling
mediates several sex-specific estradiol actions on hippocampal neuron function. An important unanswered
question regards the mechanism by which sex-specific membrane-associated ER signaling is generated, espe-
cially since it has been previously demonstrated that mGluR action is not sex-specific. One possibility is that the
genes necessary for the ER membrane complex are differentially expressed between males and females, including
genes that encode ERα and β, caveolin 1 and 3, and/or the palmitoylacyltransferases DHHC-7 and -21. Thus we
used qPCR to test the hypothesis that these genes show sex differences in expression in neonatal and adult rat
hippocampus. As an additional control we tested the expression of the 20 other DHHC palmitoylacyltransferases
with no known connections to ER. In neonatal hippocampus, no sex differences were detected in gene expres-
sion. In adult hippocampus, the genes that encode caveolin 1 and DHHC-7 showed decreased expression in
females compared to males. Thus, select genes differ by sex at specific developmental stages, arguing for a more
nuanced model than simple widespread perinatal emergence of sex differences in all genes enabling sex-specific
estradiol action. These findings enable the generation of new hypotheses regarding the mechanisms by which sex
differences in membrane-associated ER signaling are programmed.

1. Introduction

17β-estradiol (estradiol) is a potent modulator of neuron function
across a broad temporal and contextual spectrum. At one end of the
temporal spectrum are relatively slow, nuclear-initiated actions on gene
expression. These typically occur via estrogen receptor (ER) dimeriza-
tion, include concurrent interaction with nuclear transcription factors
and co-activators, and then the ER complex binds to DNA, usually but
not exclusively at estrogen response elements (EREs) [1]. These
changes can be permanent. At the other end of the spectrum is rapid
modulation of neuron function via membrane-initiated actions. More
than forty years ago it was demonstrated that acute estradiol applica-
tion changed the electrophysiological properties of preoptic/septal
neurons within seconds [2]. This finding built upon the pioneering

work of Szego and colleagues, who demonstrated that 17β-estradiol
action outside of the nervous system can occur within seconds [3].
Since these seminal findings, work from many laboratories has shown
that in a wide variety of organisms and neuron types that estradiol can
rapidly modulate many aspects of neuron function, including but not
limited to intrinsic and synaptic electrophysiological properties, in-
tracellular signaling molecule initiation, non-ERE dependent changes in
gene transcription, and anatomical properties [4–11].

The known receptors that enable rapid estradiol action include
membrane-associated versions of ERα and ERβ, G-protein coupled re-
ceptors such as GPER-1, Gq-mER, and others [12–17]. Here we focus on
membrane-associated ERα and ERβ, which are classical ERs that have
received posttranscriptional palmitoylation by the palmitoylacyl-
transferase proteins DHHC-7 and DHHC-21 [18,19]. Membrane-
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associated ERα and ERβ may exist in several splice variants [17,20,21],
and in this study ERα and ERβ refer to all known variants due to primer
design. Membrane-associated ERα and ERβ are typically coupled with
metabotropic glutamate receptors (mGluRs) by caveolins throughout
the nervous system, including the hippocampus [22–38]. This re-
lationship is schematized in [12]. Given this widespread expression, it
is not surprising that membrane-associated ER act through mGluRs to
modulate multiple behaviors, ranging from cognitive tasks such as
hippocampal-dependent memory consolidation to sex-specific beha-
viors such as lordosis [26,27,32,33,39–41].

Regarding the rat hippocampus, pyramidal neurons exhibit both
membrane-associated ERα and ERβ. These ER can be coupled to either
mGluR1a or mGluR2 via the organizing actions of caveolins 1 or 3
[18,22–25]. These pathways mediate several estradiol actions that
differ in incidence or mechanism by sex, including estradiol modulation
of cAMP response element-binding protein (CREB) phosphorylation in
vitro [18,22–24], suppression of inhibitory synaptic transmission in vivo
[25,42], and hippocampal-dependent memory consolidation [39]. The
basic underlying signaling pathways have been elucidated. There are at
least two known pathways. In the first pathway, caveolin 1 couples
membrane-associated ERα to mGluR1a and resulting second messenger
cascade. This pathway is linked to inhibitory synaptic regulation, hip-
pocampal-dependent memory consolidation, and how estradiol ex-
posure alone phosphorylates the transcription factor CREB in hippo-
campal neurons. In this second pathway, caveolin 3 couples membrane-
associated ERα and ERβ to mGluR2 and associated molecules. In hip-
pocampal neurons, the second signaling pathway mediates how pre-
exposure to estradiol attenuates CREB phosphorylation induced by the
depolarizing action of 20 mM K + .

Since the functionality of these pathways differs between female
and male hippocampal neurons, this suggests the possibility that the
mechanism responsible for programming these sex differences is the
regulation of the expression of genes that encode the necessary sig-
naling components. We systematically tested this hypothesis in neo-
natal (P8) and adult (P70) male and female rat hippocampus using
qPCR. P8 was chosen given that this age occurs after the organizing
influences of perinatal hormone action, a process sufficient to induce
sex differences in estradiol-induced signaling to CREB [24]. P70 was
chosen given that this date is past puberty and similar in age to the
relevant investigations of sex-specific estradiol modulation of hippo-
campal neurons [25,39,42–46]. Previous experiments have already
demonstrated that mGluR1a and mGluR2 action do not differ by sex or
palmitolyation state [18,22,24], and that mGluR1 is not palmitoylated
[47,48]. Thus this study focused on genes associated with ER signaling.
These genes include those that encode all known slice variants of
membrane-associated ERα and ERβ, caveolin 1 and caveolin 3, and
then DHHC-7 and DHHC-21. As a control, this study also examined the
other 20 different DHHC palmitoylacyltransferases with no known
connection to ER signaling.

2. Experimental methods

2.1. Animals

All protocols were approved by the Animal Care and Use Committee
at the University of Minnesota. Sprague-Dawley rats were born in the
Mermelstein laboratory colony from dams purchased from Harlan
Laboratories. Animals were housed in a room maintained at 20 °C to
21 °C, with a 12-h light, 12-h dark cycle and water available ad libitum.
Animals were group housed with their dam until postnatal day 22
(P22). After P22 animals were group housed by sex. Multiple litters
were used. Female estrous cycle was not monitored. Male and female
animals were killed at P8 (5 males, 5 females were used in experiments
regarding ERs and caveolins; 7 males, 7 females were used in experi-
ments regarding DHHC-3; 4 males, 4 females were used in experiments
regarding DHHC1-2, 4–23) and P70 (5 males, 5 females were used in

experiments regarding ERs, caveolins, and DHHC-7; 7 males, 7 females
were used in experiments regarding DHHC-21). Differing numbers of
animals were used in experiments because an insufficient quantity of
mRNA was extracted from a single animal to robustly analyze all target
genes. Animals were anesthetized using isoflurane and decapitated. The
brain was rapidly removed, blocked, and the hippocampus dissected
from the caudal portion of the brain, following previously published
techniques [18]. All dissections were made in ice-cold modified Hank’s
balanced salt solution (HBSS) containing (in mM) 4.2 NaHCO3 and 1
HEPES (pH 7.35, 300 mOsm). After removal from the brain, the hip-
pocampus was gently unrolled, and the dentate gyrus was removed. The
remaining portion of the hippocampus was sliced into small pieces
(≤0.5 cm in all dimensions). Tissue was immediately submerged in
RNAlater (ThermoFisher Scientific), following the manufacturer’s re-
commendation of approximately 10 μl of RNAlater per 1 mg tissue.
Tissue was stored at 4 °C overnight and then frozen at −20 °C until
mRNA extraction.

2.2. PCR

Quantitative PCR (qPCR) was performed using previously published
protocols [49]. mRNA was extracted and reverse transcribed from
tissue using standard kits and following the manufacturer’s instructions
for purification of RNA from animal tissues (RNAeasy Mini or Midi Kit;
QauntiTect Reverse Transcription Kit; Qiagen, Valencia, CA, USA).
Tissue was disrupted and homoegenized using a rotor-stator homo-
genizer. Residual DNA was removed via a gDNA Eliminator spin
column and further DNAse digestion after RNA purification. qPCR
amplification was performed using LightCycler 480 SYBR Green I
Master Mix (Roche) on a LightCycler 480 II PCR machine (Roche).
Threshold values were calculated using the Second Derivative Max-
imum method and standardized to the ribosome-related genes rpl13a
and rps18 (LightCycler 480 Software 1.5, Roche). PCR for individual
cDNA samples was performed in triplicate, and overall experiments
were repeated at least twice. The thermal cycling program used was: a
pre-incubation step at 95 °C for 5 min, followed by at least 45 cycles
consisting of a 10 s denaturing step at 95 °C, annealing step for 10 s at
60 °C, an extension step for 10 s at 72 °C, and a measurement of
fluorescent intensity. At the end of each cycling program, a melting
curve was run. Upper and lower primer sequences were either devel-
oped for this study or previously published [18,50] (Table 1). We note
that the primers employed for ERα and ERβ were designed to detect all
known splice variants.

2.3. Statistics

Statistical analysis followed previously published methods [51].
Briefly, data were analyzed with 2-tailed Mann-Whitney U tests (Prism
6.07; GraphPad Software). Probability values ≤0.05 were considered a
priori significant. Data are presented as mean ± SEM.

3. Results

3.1. Estrogen receptor expression does not vary by sex in rat hippocampus

In the first experiment, we tested if ERα and ERβ show differential
expression by sex in the hippocampus. Membrane-associated ERα and
ERβ are encoded by the genes esr1 and esr2, respectively. These are the
same genes that also encode for nuclear-expressed ERα and ERβ. We
found no evidence that the expression of esr1, the gene that encodes
membrane-associated ERα, differed by sex in either neonatal or adult
hippocampus (Fig. 1A; neonatal: U = 7, P = 0.31; adult: U = 11,
P = 0.84). Similarly, esr2, the gene that encodes membrane-associated
ERβ, did not differ by sex (Fig. 1B; neonatal: U = 7, P= 0.56; adult:
U = 8, P= 0.73). These results support the conclusion that overall
gene expression of ERα and ERβ do not differ by sex in rat
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Table 1
Primer sequences.

Gene Name GenBank Accession Number Upper and Lower Primer Sequences

cav1 (caveolin 1) NM_031556 5′-GCAGTTGTACCGTGCATCAAGAG-3′ and 5′-CGGATATTGCTGAATATCTTGCC-3′
cav3 (caveolin 3) NM_019155.2 5′-TGGAGGCACGGATCATCAAG-3′ and 5′-ACACGCCATCGAAGCTGTAA-3′
esr1 (estrogen receptor α) NM_012689.1 5′-TTTCTTTAAGAGAAGCATTCAAGGA-3′ and 5′-TTATCGATGGTGCATTGGTTT-3′
esr2 (estrogen receptor β) NM_012754.1 5′-ATGTACCCCTTGGCTTCTGC-3′ and 5′-ACTGCTGCTGGGAGGAGATA-3′
rpl13a (ribosomal protein L13a) NM_173340 5′-TGCTGCCGCACAAGACCAAA-3′ and 5′-AACTTTCTGGTAGGCTTCAGCCGC-3′
rps18 (ribosomal protein S18) NM_213557.1 5′-AAAATCCGAGCCCATAGAGG-3′ and 5′-TCTTCTTGGACACACCCACA-3′
zhhdc1 (DHHC-1) NM_001039099.1 5′-GCAGCAAGCCTTAGGATGAT-3′ and 5′-TCAGGGCCAGGATGACAG-3′;
zhhdc2 (DHHC-2) NM_145096.2 5′-GCCACCTCCTTACGGATTCT-3′ and 5′-GCAGGGTTGCTCATACCG-3′
zhhdc3 (DHHC-3) AY886522.1 5′-TGCTTTGAAGAAGACTGGACAA-3′ and 5′-AAGAGCAGGGCCTCAAAAC-3′
zhhdc4 (DHHC-4) NM_001013123.1 5′-CATCAGCTCTTCCACACACG-3′ and 5′-TGTATTCCGCGTAAACTAGCC-3′
zhhdc5 (DHHC-5) NM_001039338.1 5′-TACACAGGGCTTCGAACACA-3′ and 5′-TGCCCAAGAGACTGCTATCC-3′
zhhdc6 (DHHC-6) NM_001037652.1 5′-GAACCATGCGTCCTTCACA-3′ and 5′-AAAGCAGCATGGGTGCAG-3′
zdhhc7 (DHHC-7) NM_133394.1 5′-CAATATGCAATGACGAAACTGAG-3′ and 5′-GAAGACAGCTTCATCCCTTCC-3′
zhhdc8 (DHHC-8) AY871204.1 5′-CCAGCACCCTCTTCTTCGTA-3′ and 5′-GAGGATGCCATTGTAGACAGG-3′
zhhdc9 (DHHC-9) NM_001039016.2 5′-ACACTCTTCTTTGCCTTCGAGT-3′m and 5′-AGCAGCAAACACAGGGATG-3′
zdhhc11 (DHHC-11) NM_001039342.2 5′-AACAACTTGACTTGGCCTACG-3′ and 5′-TGGCGAAAGAGTAGACAGCA-3′
zhhdc12 (DHHC-12) NM_001013239.1 5′-CTGACCTGGGGAATCACG-3′m and 5′-CTTGCTCTTCCCATTGACG-3′
zhhdc13 (DHHC-13) NM_001039037.1 5′-CTGGGCCATCCGACAAGGGC-3′ and 5′-CAGAGTGGGGTCTGCACCATGC-3′
zhhdc14 (DHHC-14) NM_001039343.1 5′-CCGGCAGACCGGCGTTTTCT-3′ and 5′-CAGGATGCCACCGACCACGG-3′
zhhdc15 (DHHC-15) NM_001039101.1 5′-CGCCGGGTACTGTCCTGGGT-3′m and 5′-GGTTGGGCTGCTGTGGGAGTG-3′
zhhdc16 (DHHC-16) NM_001039346.1 5′-CTACCGGCGTCGATGCCCAC-3′ and 5′-GAGCAGGGAGCGCAGGCAAA-3′
zhhdc17 (DHHC-17) NM_001039340.1 5′-ACCGAAACGGGCTGTGTGCC-3′ and 5′-TCCGCCCAAGAGGCTCACCAT-3′
zhhdc18 (DHHC-18) NM_001039339.1 5′-AGCCTGATCGACCGGAGGGG-3′ and 5′-CTGGCGTCTGGCTTGGCTCC-3′
zhhdc19 (DHHC-19) NM_001039259.1 5′-CCTAATTCACACGAGCCATCT-3′ and 5′-GGAAGAGTGGAATCAGGAAGC-3′
zhhdc20 (DHHC-20) NM_001039336.1 5′-GCGTAGTGGGCTGGGTTCCG-3′ and 5′-CACGCACAGCTCCACCACGTA-3′
zhhdc21 (DHHC-21) AY886536.1 5′-GATGGGAGCGCTTCGGCCTC-3′ and 5′-CCACATGCAGAGCGGGAGCTG-3′
zhhdc22 (DHHC-22) NM_001039325.1 5′-GATCAGGGTTGCGTCTGG-3′ and 5′-GCCAGCATCCTCGATTACAT-3′
zhhdc23 (DHHC-23) NM_213627.2 5′-TCGGCCGGAGACGTGTGAGA-3′ and 5′-AAGCCACGCGGAGCAGAACC-3′

There is no DHHC-10. Abbreviations: Domain-Containing Cysteine-Rich (DHHC).

Fig. 1. Caveolin 1 expression is decreased in adult female
compared to male hippocampus, with no sex differences
detected in estrogen receptor α, β, or caveolin 3 expression.
A, qPCR analysis of estrogen receptor α (ERα) expression in
neonatal (P8) and adult (P60) male (M) and female (F) rat
hippocampus. B, estrogen receptor β (ERβ). C, caveolin 1. D,
caveolin 3. Bar color and letters indicate statistically sig-
nificantly different groups.
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hippocampus. This finding serves as an important control as it verifies
the results of previous studies from other laboratories that analyzed ER
mRNA, protein, and immunocytochemical expression [52–55], and
helps interpret how measurements at the foundational level of gene
expression relate to those made across transcription.

3.2. Caveolin 1 expression is decreased in adult female compared to male
hippocampus

Caveolins are necessary for coupling membrane-associated ERα and
ERβ to specific mGluRs [23]. The next experiments tested whether
caveolin 1 and caveolin 3 expression differed by sex. Expression of cav1,
which encodes caveolin 1, did not differ by sex in neonatal hippo-
campus (Fig. 1C; U = 11, P= 0.84). In adult hippocampus, expression
of cav1 was decreased in females compared to males (Fig. 1C; U = 0,
P = 0.0079). Expression of cav3, which encodes caveolin 3, did not
differ by sex at either developmental time point (Fig. 1D; neonatal:
U = 10, P > 0.99; adult: U = 12, P > 0.99). These data indicate that
expression of caveolin 1, but not caveolin 3, may be developmentally
regulated in a sex-specific manner.

3.3. DHHC-7 expression is decreased in adult female compared to male
hippocampus

Membrane-associated ERα and ERβ must be palmitoylated in order
to properly signal. The palmitoylacyltransferase proteins DHHC-7 and
DHHC-21 are necessary for ER palmitoylation and membrane signaling
in hippocampal neurons and cancer cells [18,19]. In neonatal hippo-
campus, no sex differences were detected in the expression of any gene
encoding a known DHHC palmitoylacyltransferase (Table 2), regardless
of whether the DHHC is known to be linked to ER signaling. This
finding includes the genes that encode DHHC-7 and DHHC-21, zdhhc7
and zdhhc21, respectfully (Fig. 2). In adult hippocampus, we targeted
the genes that encode DHHC-7 and DHHC-21. Expression of zdhhc7,
which encodes DHHC-7, was decreased in adult females compared to
males (Fig. 2A; U = 2, P = 0.0317). Expression of zdhhc21, which en-
codes DHHC-21, did not differ by sex (Fig. 2B; U= 23.5, P = 0.92). As
a control, we also measured expression of the gene that encodes DHHC-
11, which has no known connection to ER palmitoylation in either

neuronal or nonneuronal cells [18,19]. Expression of zdhhc11, which
encodes DHHC-11, did not differ by sex in adult hippocampus (Male:
1.10 ± 0.22, Female: 1.12 ± 0.24; U = 11.5, P = 0.89). This data
indicate that the expression of DHHC-7, but not DHHC-21, may be
developmentally regulated in a sex-specific manner, similar to caveolin
1 expression.

4. Discussion

Here we tested the hypothesis that the expression of genes necessary
for membrane-associated ER signaling complexes differ by sex in the rat
hippocampus. There are three principle findings of this study. First, no
sex differences were detected in the expression of any gene in neonatal
hippocampus. Second, the genes that encode caveolin 1 and DHHC-7
were decreased in adult hippocampus. Third, the other genes analyzed,
including those that encode for all known DHHCs, did not show sex
differences in expression in adult hippocampus. This study demon-
strates that caveolin 1 and DHHC-7 represent a promising route for
future experiments targeting the mechanisms underlying sex specific
membrane-associated ER signaling.

A priori, there were three possible broad outcomes for this experi-
ment. The first possible outcome was that all the genes necessary for
membrane-associated ER signaling showed sex differences in

Table 2
DHHC expression in neonatal male and female rat hippocampus.

DHHC Name Expression Statistics (U, P)

DHHC-1 M: 1.01 ± 0.05; F: 0.79 ± 0.13 4, 0.34
DHHC-2 M: 1.02 ± 0.11; F: 0.93 ± 0.07 6, 0.60
DHHC-3 M: 1.02 ± 0.08; F: 1.12 ± 0.15 21, 0.71
DHHC-4 M: 1.01 ± 0.07; F: 0.90 ± 0.05 4, 0.34
DHHC-5 M: 1.01 ± 0.06; F: 1.22 ± 0.16 5, 0.49
DHHC-6 M: 1.04 ± 0.16; F: 1.06 ± 0.03 4, 0.34
DHHC-7 M: 1.02 ± 0.11; F: 0.93 ± 0.07 6, 0.60
DHHC-8 M: 1.01 ± 0.07; F: 1.01 ± 0.16 7, 0.89
DHHC-9 M: 1.01 ± 0.08; F: 0.97 ± 0.10 8, 0.99
DHHC-11 M: 1.01 ± 0.10; F: 1.32 ± 0.11 2, 0.11
DHHC-12 M: 1.03 ± 0.14; F: 1.27 ± 0.11 2, 0.11
DHHC-13 M: 1.01 ± 0.05; F: 0.83 ± 0.12 4, 0.34
DHHC-14 M: 1.01 ± 0.09; F: 1.11 ± 0.16 7, 0.89
DHHC-15 M: 1.00 ± 0.04; F: 1.13 ± 0.05 3, 0.14
DHHC-16 M: 1.00 ± 0.05; F: 0.71 ± 0.13 3, 0.20
DHHC-17 M: 1.02 ± 0.10; F: 1.25 ± 0.19 4, 0.34
DHHC-18 M: 1.01 ± 0.10; F: 1.15 ± 0.13 5, 0.49
DHHC-19 M: 1.09 ± 0.21; F: 0.89 ± 0.30 6, 0.69
DHHC-20 M: 1.01 ± 0.06; F: 1.21 ± 0.14 4, 0.34
DHHC-21 M: 1.05 ± 0.17; F: 0.87 ± 0.19 5, 0.49
DHHC-22 M: 1.03 ± 0.14; F: 0.78 ± 0.07 3, 0.20
DHHC-23 M: 1.10 ± 0.27; F: 0.68 ± 0.18 4, 0.34

No significant differences were detected between neonatal males and females. Values are
mean± SEM. Values are relative gene expression normalized to males, and are unitless.
Abbreviations: M, male; F, female; DHHC, Domain-Containing Cysteine-Rich.
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Fig. 2. DHHC-7 expression is decreased in adult female compared to male hippocampus,
with no sex differences detected in DHHC-21 expression. A, qPCR analysis of DHHC-7
expression in neonatal (P8) and adult (P60) male (M) and female (F) rat hippocampus. B,
DHHC-21. Bar color and letters indicate statistically significantly different groups.
Measurements of other DHHC genes are found in Table 2.
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expression. This result was unlikely given the pleiotropic actions of
membrane-associated ER on hippocampal neurons, and the lack of
detected sex differences in autoradiographic measurements of estradiol
binding, ERα and ERβ mRNA, protein, and immunocytochemical ex-
pression in rat hippocampus [52–56]. This demonstrated consistency in
ER expression across translation, along with both our and other la-
boratory’s previous studies showing strong relationships between ERα,
caveolin 1 and 3, and DHHC-22 mRNA and protein expression
[18,19,23], validates the approach of this study to assess sex differences
at the foundational level of gene expression. Nevertheless, it is im-
portant to acknowledge an important limitation of this study: that
change in mRNA expression does not necessarily directly translate to
changes in protein expression, or once created, that a protein is traf-
ficked to the plasma membrane versus other destinations within the
neuron. Indeed, ERα and ERβ must be modified post-transcription in
order to be trafficked to the membrane, so mRNA measurements of esr1
and esr2 assess both the nuclear and membrane versions of ERα and
ERβ. We also did not measure the expression of gper1, which encodes G-
Protein Coupled Estrogen Receptor 1, a membrane estrogen receptor
distinct from ERα and ERβ [16,57]. Future experiments should directly
assess sex differences in ERα, ERβ, and GPER-1 availability at the
plasma membrane, as it is possible that this may be part of the me-
chanism generating sex-specific estradiol signaling. Other limitations
which should also be considered when interpreting these data include
that the dissection employed does not distinguish between different cell
types or the various hippocampal regions (other than the dentate gyrus,
which was removed), and that the estrous cycle in females was not
monitored.

The second possible broad outcome of this experiment was that
none of the assessed genes showed sex differences in expression. A
priori, we found this outcome unlikely, given the robust sex differences
and estradiol-sensitivity displayed by the hippocampus and its com-
ponent cells in many metrics, including gene expression in a number of
different contexts [12,43,44,58–63]. This sensitivity to gonadal sex is
not limited to the hippocampus. Sex differences in gene expression are
widespread across the brain, even in regions not directly involved with
sex specific behaviors such as reproduction [64,65].

This leads us to the third broad possible outcome, that select genes
showed sex differences in expression. A priori, we considered this out-
come to be the most likely and potentially insightful. For example, if
only genes that encode caveolins showed a sex difference, then that
would indicate that regulation of caveolin expression played a sig-
nificant role in generate sex-specific ER signaling. Another possibility
was that genes linked to a specific membrane-associated ER pathway
showed sex differences in expression. Indeed, this is the principal
finding of this study. Both caveolin 1 and DHHC-7 showed sex differ-
ences in expression in adult hippocampus. It is highly significant that
both caveolin 1 and DHHC-7 showed sex differences in expression.
Caveolin 1 couples membrane-associated ERα to mGluR1a and the re-
sulting second messenger signaling cascade, and DHHC-7 is necessary
for ERα to signal from the membrane in both cultured and adult hip-
pocampal neurons [18,19].

An interesting point about the findings of this study is the direction
of effect in adult animals. Namely, that caveolin 1 and DHHC-7 were
decreased in expression in adult female hippocampus compared to male
hippocampus. While we have only observed action of the ERα/mGluR/
caveolin 1 pathway in female hippocampal neurons in the context of
signaling to CREB [22,24], similar interactions occur in adult male
hippocampus neurons in other contexts. In particular, this study’s
findings strongly resonate with the known actions of membrane-asso-
ciated ERα on glutamatergic transmission in adult hippocampal neu-
rons. Oberlander and colleagues showed that a specific estradiol-sen-
sitive receptor in each sex exclusively mediates how estradiol rapidly
potentiates glutamatergic neurotransmission in both male and female
hippocampus [44]. Activation of ERα modulated glutamatergic trans-
mission in males, not females. Given that caveolin 1 is necessary for

organizing the ERα/mGluR pathway [23], it is possible that the in-
creased expression of caveolin 1 and DHHC-7 in males is responsible for
enabling estradiol-induce potentiation of glutamatergic signaling by
enabling the trafficking of ERα. Consistent with this speculation, ca-
veolin 1 expression has been implicated with several forms of synaptic
plasticity [66–68], and in males downregulation of caveolin 1 in the
hippocampus is correlated with deficits in hippocampus-dependent
learning tasks [69]. Much less is known about the role of DHHC-7 and
links to synaptic plasticity, however it has been implicated in the pal-
mitoylation of other membrane receptors, the G protein alpha subunit,
regulation of GABAergic synapse function and molecules such as NCAM
and PDE10A that regulate synaptic plasticity [70–76].

In general, caveolins and DHHC palmitoylacyltransferases play
crucial roles in both trafficking and organizing a wide range of plasma
membrane-initiated signaling cascades. In the nervous system, caveo-
lins are implicated in intracellular trafficking and with physically or-
ganizing receptors and other signaling molecules with lipid rafts on or
near the plasma membrane, including mGluRs [67,77–79]. In the hip-
pocampus the expression of all three caveolin isoforms have been
documented [23,66]. Beyond mGluRs and membrane-associated ERs
[23,80–82], caveolins are also involved with endocytosis, trafficking,
and organizing a diverse multitude of relevant molecules such as do-
pamine receptors, NMDA and AMPA receptors, M1 muscarinic re-
ceptors, receptor tyrosine kinases and cAMP signaling pathway com-
ponents both in and outside the nervous system [83–87]. Similar to
caveolins, DHHC palmitoylacyltransferases play crucial roles in in-
tracellular trafficking. DHHC palmitoylacyltransferases perform S-pal-
mitoylation, which is a reversible post-translational modification in-
volving attaching a 16-carbon fatty acid palmitate to cysteine residues
embedded within a specific peptide sequence on target proteins [88].
This palmitate group serves the dual function of being a trafficking
signal and a lipophilic anchor. There are 22 known DHHCs, which show
differing levels of substrate specificity and individual function [89,90].
mRNA for all of these DHHCs are present in hippocampal neurons, and
the expression of all DHHC genes is examined in this study (Table 2).
DHHC palmitoylacyltransferases regulate molecules necessary for sy-
naptic function and are sensitive to synaptic plasticity, and their in-
ternal distribution can be dynamically regulated [91–94]. Given the
diversity and sheer range of processes modulated by the members of the
DHHC family, we do not find it unusual that a specific DHHC enzyme
previously implicated in membrane-associated ER function such as
DHHC-7 shows differential expression by sex.

5. Summary

Here we have presented evidence that the expression of genes that
encode caveolin 1 and DHHC-7 are decreased in adult female compared
to male hippocampus. There were no sex differences detected in gene
expression in neonatal animals. In adult animals, no sex differences in
gene expression were detected for estrogen receptor α and β, Caveolin
3, DHHC-21. Overall, this body of data is useful for generating new
hypotheses regarding the mechanisms by which sex differences in
membrane-associated ER signaling are programmed.
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