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Steroid sex hormones and biological sex influence how the brain regulates motivated 
behavior, reward, and sensorimotor function in both normal and pathological contexts. 
Investigations into the underlying neural mechanisms have targeted the striatal brain 
regions, including the caudate–putamen, nucleus accumbens core (AcbC), and shell. 
These brain regions are of particular interest to neuroendocrinologists given that they 
express membrane-associated but not nuclear estrogen receptors, and also the 
well-established role of the sex steroid hormone 17β-estradiol (estradiol) in modulating 
striatal dopamine systems. Indeed, output neurons of the striatum, the medium spiny 
neurons (MSNs), exhibit estradiol sensitivity and sex differences in electrophysiological 
properties. Here, we review sex differences in rat MSN glutamatergic synaptic input 
and intrinsic excitability across striatal regions, including evidence for estradiol-mediated 
sexual differentiation in the nucleus AcbC. In prepubertal animals, female MSNs in the 
caudate–putamen exhibit a greater intrinsic excitability relative to male MSNs, but no 
sex differences are detected in excitatory synaptic input. Alternatively, female MSNs in 
the nucleus AcbC exhibit increased excitatory synaptic input relative to male MSNs, but 
no sex differences in intrinsic excitability were detected. Increased excitatory synaptic 
input onto female MSNs in the nucleus AcbC is abolished after masculinizing estradiol 
or testosterone exposure during the neonatal critical period. No sex differences are 
detected in MSNs in prepubertal nucleus accumbens shell. Thus, despite possessing 
the same neuron type, striatal regions exhibit heterogeneity in sex differences in MSN 
electrophysiological properties, which likely contribute to the sex differences observed 
in striatal function.

Keywords: sex, estradiol, hormones, striatum, medium spiny neuron, nucleus accumbens, caudate–putamen, 
electrophysiology
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inTRODUCTiOn

Steroid sex hormones and biological sex are important fac-
tors influencing neuron function (1–4). Historically, research 
into the roles of biological sex and hormones targeted brain 
regions directly involved in sex-specific reproduction-related 
behaviors in adult animals (5, 6). These regions display large 
sex differences in volume, neuron cellular anatomy, and/or 
electrophysiological properties. Examples of these regions 
include the spinal nucleus of the bulbocavernosus (7), the 
sexually dimorphic nucleus of the preoptic area (8), and the 
song control nuclei in sexually dimorphic songbirds (9). Years 
of work have built upon these early studies to make significant 
advances. Notable among these is the discovery that biologi-
cal sex and steroid sex hormones can modulate brain regions 
not directly involved with sex-specific reproductive behaviors. 
Although the extent of the influence on biological sex in the 
nervous system remains vastly underexplored, especially since 
few studies documented experimental animal sex (10–12), 
contemporary research has detected sex differences in neural 
substrates across the brain (13–18). The newly appreciated role 
of sex in modulating neural substrate also includes the striatal 
brain regions, comprising the caudate–putamen (also called 
dorsal striatum), the nucleus accumbens core (AcbC) and the 
nucleus accumbens shell (AcbS).

Biological sex, exogenous 17β-estradiol (estradiol), and 
endogenously circulating hormones via the estrous or men-
strual cycle can modulate striatal-mediated cognitive, locomo-
tor, and sensorimotor behaviors, including those related to 
motivation and reward (19–30). Many striatal pathologies are 
sensitive to estradiol and/or show sex differences in incidence 
and/or phenotype. These include depression, Parkinson’s 
disease, drug addiction, schizophrenia, tardive dyskinesia, 
Huntington’s disease, ADHD, and Tourette’s syndrome, among 
others (31–41). The majority of published research in this field 
probes the link between sex and estradiol-induced influences 
on striatal-mediated normal and pathological behaviors 
(20, 42–46), especially regarding critical neurotransmitter/
modulator systems such as dopamine and acetylcholine (43, 
47–64). This research has established that sex and estradiol 
can influence striatal function via action on neurotransmitter 
and modulator systems, especially since the striatal regions 
show no robust sex differences in regional volume, neuron 
density, or soma size (65, 66). One area that has historically 
received less attention is how sex and estradiol modulate the 
electrophysiological properties of striatal neurons, including 
both the output neuron of the striatum, the medium spiny 
neuron (MSN) (67), and striatal interneurons (68). The term 
MSN is synonymous with striatal projection neuron. This is 
unfortunate, given that to change striatal circuit output and 
ultimately function, estradiol and sex must in some respect 
influence the electrophysiology of the MSN. This mini-review 
will focus upon the current state of knowledge regarding sex 
differences in rat MSN electrophysiological properties across 
striatal regions, with a focus on glutamatergic inputs and 
intrinsic excitability.

MSns in ADULT CAUDATe–PUTAMen 
SHOw SeX-SPeCiFiC AnD eSTRADiOL-
inDUCeD DiFFeRenCeS in eXCiTABiLiTY 
IN VIVO

This research began in the 1980s, when Vincent and colleagues 
discovered that estradiol exposure increased in vivo spontaneous 
action potential generation and dopamine sensitivity in striatal 
neurons in ovariectomized adult female rat caudate–putamen 
(69). Tansey and colleagues then identified that the striatal 
neurons showing increased in vivo spontaneous action potential 
generation in response to high estradiol levels included nigros-
triatal MSNs (other MSN subtypes and striatal interneurons 
were not examined). This increase in spontaneous action 
potential generation was induced either via exogenous estradiol 
exposure in ovariectomized animals or endogenously during 
specific phases of the estrous cycle (70). MSN spontaneous 
action potential firing rates were elevated in females compared 
with males only during the phases of the estrous cycle associ-
ated with the effects of increased estradiol and progesterone 
(proestrus and estrus). MSNs outside of the caudate–putamen 
were not examined in either study. The next breakthrough in 
targeting MSN electrophysiology came in the mid-1990s, when 
Mermelstein and colleagues established that estradiol rapidly 
decreases L-type calcium channel currents in both prepubertal 
and adult female rat caudate–putamen MSNs (71). In this case, 
estradiol acted within seconds in a steroid- and dose-dependent 
method on a membrane-associated estrogen receptor. The recep-
tor was eventually identified as membrane-associated estrogen 
receptor β (72). Later research encompassing both the caudate–
putamen and the nucleus accumbens established the presence 
of membrane-associated estrogen receptors α, β, and GPER-1 
in MSNs, striatal interneurons, presynaptic terminals, and glia 
(72–78). The presence of aromatase, the enzyme that converts 
testosterone into estradiol, was also confirmed (79–82). There is 
little to no evidence of nuclear estrogen receptors in the striatal 
regions in adult rodents (83–85), although an exhaustive search 
across development, estrus cycle stages, and relevant species has 
not been performed.

These studies established several foundational themes for more 
recent research on the influences of estradiol and sex on MSN 
electrophysiology. First, estradiol can act directly on MSNs to 
modulate electrophysiological properties in addition to indirectly 
acting on MSNs by manipulating neuromodulatory influences 
such as those encompassed by the dopaminergic and cholinergic 
systems. Second, MSN sensitivity to estradiol can occur in a sex-
specific fashion. Third, estradiol can manipulate MSN excitability, 
and in particular can increase MSN excitability in adult female 
animals. This sex-specific increase in MSN excitability could be 
potentially induced by multiple cellular mechanisms, broadly 
grouped into two types: mechanisms inducing alterations in 
synaptic input onto MSNs and mechanisms inducing alterations 
in the intrinsic electrophysiological properties of MSN. These 
mechanisms are not necessarily mutually exclusive and are not 
necessarily active in every striatal region. Recent research has 
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TABLe 1 | Development of sex differences in MSN electrophysiological properties varies by striatal region.

electrophysiological 
property

Developmental 
stage

Caudate–putamen nucleus Accumbens Core nucleus Accumbens Shell

Intrinsic neuronal 
excitability

Prepubertal Female > male Female = male Female = male

Adult ?a ? ?

Excitatory synaptic 
Input

Prepubertal Female = male Female > male Female = male

Adult ?a Female > maleb Female = male?b,c

aAdult caudate–putamen medium spiny neurons (MSNs) show increased excitability in vivo in females compared with males, but the mechanisms underlying this phenomenon 
remains unknown and are not included in this table.
bAnimals were gonad intact, but female estrous cycle stage has not been comprehensively examined.
cMost but not all accumbens shell (AcbS) literature shows no evidence of sex differences or estrogen sensitivity in excitatory synaptic input in adult animals unexposed to adverse 
environmental stimuli.
?—Data not available or complex.
Color signifies the presence of a sex difference.
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uncovered that both mechanism types can influence MSN excit-
ability, with heterogeneity across striatal regions (Table 1).

eXCiTATORY SYnAPSe nUMBeR iS 
inCReASeD OnTO FeMALe COMPAReD 
wiTH MALe AcbC MSns, AnD THeSe 
SYnAPSeS ARe MODULATeD BY 
eSTRADiOL in ADULTHOOD

Regarding the AcbC, in the early part of this decade, Woolley and 
colleagues formulated the hypothesis that excitatory synapses 
onto MSNs in this region are increased in females compared with 
males (86). Anatomical studies employing electron microscopy, 
immunocytochemistry, and other techniques established that 
increased excitatory synapses are present on MSNs in the AcbC of 
adult rat females in proestrus compared with gonad-intact males 
(86–88). Alterations in excitatory synapse activity instruct AcbC 
function in many contexts (89–93), including the responsiveness 
to drugs of abuse (94). Even minor sex differences in these excita-
tory synaptic inputs are potentially influential on AcbC function.

One neuroanatomical correlate of increased excitatory syn-
apse number onto female compared with male rat AcbC MSNs 
was concomitant increased dendritic spine density (87, 88). This 
sex difference in dendritic spine density was also identified in 
adult human AcbC, with increased dendritic spine density on 
female compared with male MSNs (95). In other brain regions, 
dendritic spine density has long been documented to be sensi-
tive to estradiol exposure, either via endogenous exposure via 
the estrous or menstrual cycles, or exogenous (96–98). Regarding 
the AcbC, Staffend et  al. elucidated that a 2-day exposure to 
exogenous estradiol altered dendritic spine density on MSNs 
in gonadectomized female hamsters (99). This exogenous 
estradiol-induced change in spine density is also detected in 
gonadectomized rat females and is dependent upon estradiol 
activating mGluR5 and endocannabinoid signaling via CB1 
receptors (100, 101). This estrogen receptor/mGluR5 signaling 
pathway in the AcbC is speculated to induce an increased drive 
for sex (23), although this has not been tested in the context of 
the estrous cycle. Regarding neurological disorders, this pathway 
is implicated as one mechanism underlying estradiol-induced 
potentiation of cocaine-induced locomotor sensitization and 

cocaine self-administration (102, 103). This estradiol-induced 
change in dendritic spine density seems specific to the AcbC, at 
least in the absence of other interacting variables. No estradiol-
induced changes in dendritic spine density were measured in the 
caudate–putamen, and only one of three experiments showed an 
estradiol-induced change in spine density in the AcbS (99, 101). 
There is select evidence that postsynaptic excitatory synapse 
markers are also increased in female AcbS (86), but this is not 
a robust finding (88, 104). There is evidence that sex differences 
in excitatory synapse in the AcbS are induced by the effects of 
stress and potentially other environmental factors (105). In 
AcbS MSNs, a stress paradigm induced sex-specific alterations 
in presynaptic but not postsynaptic excitatory synapse markers 
(106). Investigating the interactions between sex, hormones, and 
environmental inputs such as stress or environmental chemical 
exposure is an essential future line of research. Regarding male 
MSNs, another possibility is that testosterone regulates excitatory 
synaptic input onto nucleus accumbens neurons, as suggested 
by experiments analyzing dendritic spine density in response 
to week-long exogenous testosterone exposure in gonad-intact 
male rats (107), and the role of androgens in reward-related 
behaviors (108).

inCReASeD eXCiTATORY SYnAPSe 
ACTiviTY in FeMALe AcbC MSns iS 
PReSenT BeFORe PUBeRTY AnD iS 
BLOCKeD BY neOnATAL eXPOSURe  
TO eSTRADiOL

This body of data indicates that excitatory synapse number is 
increased onto adult female compared with male MSNs in the 
AcbC. Whether these differences in excitatory synapse num-
ber are functional has been assessed by analyzing miniature 
excitatory postsynaptic current (mEPSC) properties (Table 1). 
Wissman and colleagues discovered increased mEPSC 
frequency in adult gonad-intact female compare to male rat 
AcbC MSN, with estrous cycle not formally assessed (88). No 
differences were detected in mEPSC amplitude, decay, or in 
paired pulse properties, consistent with a model of increased 
excitatory synapse number in female compared with male 
AcbC, although sex differences in synaptic release probability 
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remain possible. This increase in excitatory synaptic input could 
potentially be generated either in puberty or during the early 
natal sensitive period, and then modulated in adult females by 
the estrous cycle. Cao and coauthors addressed this question 
in three respects (109). First, increased mEPSC frequency onto 
female compared with male MSN in the rat AcbC was present 
prepuberty, determining that sex differences in excitatory 
synapse are generated before puberty and adulthood. Second, 
MSNs from females exposed to masculinizing levels of estradiol 
or testosterone during the neonatal sensitive period to organi-
zational hormone action lacked increased mEPSC frequency 
compared with control females or males. This finding shows 
that neonatal masculinization/defeminization via estrogen 
exposure is sufficient to permanently downregulate excitatory 
synaptic input onto MSNs, an endocrine process which would 
normally occur only in male animals. This suggests an overall 
model that sex differences in AcbC excitatory synapse number 
are organized by steroid sex hormone action during early 
development, with estrogen exposure in males permanently 
decreasing AcbC synapse number and possibly adult estrogen 
sensitivity. Finally, Cao and colleagues found no evidence that 
MSN intrinsic membrane or action potential properties differed 
by sex, including those mediating intrinsic excitability. These 
findings tentatively focus the working model explaining sex dif-
ferences in AcbC function toward the neuroanatomical inputs 
onto MSNs, most prominently glutamatergic synapse, but also 
dopamine inputs. Intriguing possibilities include interactions 
between sex, estradiol, glutamate, and dopamine. Consistent 
with this speculation, female compared with male AcbC MSNs 
demonstrate an increased proportion of large-head dendritic 
spines adjacent to dopaminergic terminals (87). Estradiol may 
also differentially modulate dopamine signaling across striatal 
regions, as anatomical studies revealed membrane-associated 
estrogen receptor α and GPER-1 expression in dopaminergic 
terminals in the nucleus accumbens, but not the caudate–puta-
men (73, 74). Dysregulation of sex differences in glutamatergic 
and dopaminergic signaling may potentially induce sex 
differences in the phenotype and incidence of AcbC-related 
disorders.

The anatomical source of increased excitatory input into the 
AcbC is unknown. One possibility of many is that the AcbC 
receives a sex-specific excitatory input distinct from other stri-
atal regions. Consistent with this possibility, the AcbC receives 
a different set of glutamatergic inputs than other striatal regions 
(110, 111). These differential inputs are consistent with the 
AcbC mediating separate aspects of behavior than other striatal 
regions, including locomotor behaviors (112, 113), but also 
maternal, social, reward, learning, sensorimotor, and sex-related 
behaviors (112–121). Relatively new transgenic techniques could 
potentially be applied to address gaps in anatomical knowledge 
(122). However, inbred laboratory mice may not be effective 
tools to address the role of sex in modulating AcbC properties, 
as domestication induced female mice to lose sex- and AcbC-
relevant behaviors compared with non-domesticated mice 
(123). In addition, many drug-abuse and other reward-mediated 
behaviors regulated by the nucleus accumbens are difficult or 
impossible to observe in mice (124). Regarding other avenues of 

investigation, it is unknown whether excitatory synaptic input, 
intrinsic excitability, and other components such as estrogen 
receptor α and β gene expression are modulated across estrous 
cycle stage. This should be a future avenue of research given the 
differences in striatal-mediated behaviors across the estrous and 
menstrual cycles. Another unknown is how GABA receptor acti-
vation and sex interact in MSNs. This question is interesting given 
that in select cases GABA receptor activation can facilitate MSN 
action potential generation (125), and that estradiol exposure can 
decrease extracellular GABA concentration in adult female rat 
caudate–putamen (126).

nO eviDenCe FOR SeX DiFFeRenCeS in 
eXCiTATORY SYnAPTiC inPUT OnTO 
MSns in THe PRePUBeRTAL AcbS AnD 
CAUDATe–PUTAMen

Prepubertal sex differences in excitatory synaptic input seem 
specific to the AcbC. MSNs in prepubertal male and female 
AcbS and caudate–putamen show no evidence of sex differences 
in mEPSC frequency, amplitude or decay (104, 127). Although 
there is no evidence of sex differences in excitatory synaptic 
properties so far, it is always a possibility that sex or estradiol 
modulates unexamined aspects of glutamatergic or other neu-
rotransmission, including but not limited to NMDA/AMPA 
ratios/function, synaptic plasticity, and/or silent synapse forma-
tion. At this point it is unknown whether MSNs in adult AcbS or 
caudate–putamen exhibit sex differences in excitatory synaptic 
input, although one study used anterograde but not retrograde 
tracing methods to provide evidence of increased projections 
from the orbital frontal cortex to the caudate–putamen in adult 
gonad-intact female compared with male rats (128). Regarding 
synaptic plasticity, a recent study established that pharmacologi-
cal inhibition of aromatase blocked the induction of long-term 
potentiation of glutamatergic excitatory inputs onto MSNs in 
adult gonad-intact male rat caudate–putamen neurons (81). 
This study did not include females, but increased estradiol 
concentrations in adult female caudate–putamen compared 
with estradiol concentrations in circulating plasma levels (129), 
along with the presence of aromatase in caudate–putamen and 
nucleus accumbens (79–82) hint that aromatase may be locally 
active across the striatum in both sexes.

MSns SHOw inCReASeD inTRinSiC 
eXCiTABiLiTY in FeMALe COMPAReD 
wiTH MALe PRePUBeRTAL CAUDATe–
PUTAMen BUT nOT THe AcbC OR AcbS

Up to this point, this review has focused on sex differences in 
excitatory synaptic input. Alternatively, sex differences could 
occur in the intrinsic electrophysiological properties of MSNs, 
including alterations in action potential properties, the frequency 
of evoked action potentials to injected current properties, and 
passive (membrane) properties. Intrinsic electrophysiological 
properties regulate action potential generation in response to 
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synaptic input (130), making these values integral in produc-
ing the functional output of MSNs. For example, augmented 
MSN intrinsic excitability would increase the number of action 
potentials that an MSN generates in response to a unit current. 
Alterations in MSN intrinsic excitability have been implicated 
in a number of striatal functions and disorders, including the 
responsivity to abused drugs, homeostatic plasticity, and striatal 
neuron subtypes (94, 131–136).

Female MSNs in prepubertal caudate–putamen show 
increased intrinsic excitability compared with male MSNs 
(127), unlike MSNs in the AcbC and AcbS (104, 109). This 
excitability is manifested in several respects. Female MSNs on 
average produce more action potentials than male MSNs for 
similar moderate amounts of injected positive current. This 
difference in action potential to current ratio is generated by an 
increased initial action potential firing rate in female compared 
with male MSNs, along with a decreased action potential after 
hyperpolarization peak and a mildly hyperpolarized action 
potential threshold. No sex differences were detected in passive 
membrane properties such as input resistance or in mEPSC 
properties. This lack of difference in mEPSC properties is essen-
tial for interpreting sex differences in MSN intrinsic excitability, 
as intrinsic excitability can be altered either independently or in 

concert with other attributes such as changes in excitatory syn-
aptic input (94, 137–140). These findings support a model where 
increased excitability in prepubertal caudate–putamen MSNs is 
driven by internal changes to MSN electrical properties, rather 
than changes in excitatory synaptic input. Elucidating the ionic 
and receptor basis underlying this increased intrinsic excita-
tion in female MSNs will be critical future experiments, along 
with assessments of adult MSNs, possible regional differences 
between dorsolateral and dorsomedial caudate–putamen, and 
the rostral–caudal axis. Changes in intrinsic excitability may be 
responsible for the increased excitability of female compared 
with male MSNs in  vivo recorded in adult caudate–putamen 
(50, 69, 70). However, it is possible that intrinsic excitability 
and/or excitatory synaptic input in the caudate–putamen may 
be reorganized during puberty, such as glutamatergic synaptic 
input in the medial amygdala (141, 142), or striatal dopamine 
receptors (31, 143, 144). Either or both of these properties may 
be modulated by estrous cycle stage (145, 146), as suggested 
by in  vivo recordings of caudate–putamen MSNs (69, 70). 
Overall, data from caudate–putamen MSNs support the theme 
of increased excitability in female compared with male MSNs, 
but indicate that the mechanism underlying these differences 
varies by striatal region.

FiGURe 1 | Schematic of sex differences in medium spiny neurons (MSNs) in prepubertal rat caudate–putamen, nucleus accumbens core (AcbC), and nucleus 
accumbens shell (AcbS). In general, MSNs recorded from prepubertal female rats exhibit increased excitation compared with male MSNs in the caudate–putamen 
and nucleus AcbC. However, the exact nature of the increased excitability in female MSNs differs by striatal region, encompassing changes in either intrinsic 
excitability (indicated in the schematic with an encircled lightning bolt) or excitatory synaptic input (indicated with arrows with plus signs). Differences in intrinsic 
excitability and excitatory synaptic input are indicated with more or less lightning bolts and arrows, respectively. Caudate–putamen MSNs show increased intrinsic 
excitability in prepubertal females compared with males. Nucleus AcbC MSNs receive augmented excitatory synaptic input in prepubertal females compared with 
males. Nucleus AcbS MSNs exhibit little evidence for sex differences in either intrinsic excitability or excitatory synaptic input in prepubertal animals.
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COnCLUSiOn

Medium spiny neuron electrophysiological properties are sensi-
tive to sex and steroid sex hormone action in a striatal region-
specific manner (Figure  1). In prepubertal caudate–putamen, 
MSNs show on average increased intrinsic excitation in females 
compared with males. In adult caudate–putamen, MSNs likewise 
show increased excitability in females compared with males, but 
the mechanism underlying this difference remains unknown. 
In both prepubertal and adult AcbC, MSNs receive augmented 
excitatory synaptic input in females compared with males, and 
early-life exposure to estradiol is instrumental in the sexual dif-
ferentiation of this property. In the AcbS, there is little evidence 
for sex differences in intrinsic excitability or excitatory synaptic 
input in prepubertal animals unexposed to adverse environmental 
stimuli. These data argue for heterogeneity across striatal regions 
in the sensitivity to MSNs to sex and steroid sex hormones and 
the relative amount and nature of masculinization and feminiza-
tion in MSN electrophysiological properties differs by striatal 
region. These findings highlight the importance of differentiating 

between striatal regions, developmental stage, sex, and estrous 
cycle. These data extend earlier mosaic models of brain sexual-
ity, in that not only individual brain regions but also individual 
neuron types, in this instance MSNs, show differential degrees of 
masculinization, feminization, and homogeny (147, 148). These 
sex differences and similarities in MSN electrophysiological 
properties, along with developmental, individual, subtype, and 
the other documented variables in MSN properties, induce a 
dizzying variety within the same neuron type both between and 
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