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A B S T R A C T   

The mesocorticolimbic system coordinates executive functions, such as working memory and behavioral flexi-
bility. This circuit includes dopaminergic projections from the ventral tegmental area to the nucleus accumbens 
and medial prefrontal cortex. In this review, we summarize evidence that cells in multiple nodes of the meso-
corticolimbic system produce neurosteroids (steroids synthesized in the nervous system) and express steroid 
receptors. Here, we focus on neuroandrogens (androgens synthesized in the nervous system), neuroestrogens 
(estrogens synthesized in the nervous system), and androgen and estrogen receptors. We also summarize how 
(neuro)androgens and (neuro)estrogens affect dopamine signaling in the mesocorticolimbic system and regulate 
executive functions. Taken together, the data suggest that steroids produced in the gonads and locally in the 
brain modulate higher-order cognition and executive functions.   

1. Introduction 

Androgens and estrogens are secreted by the testes and ovaries, 
respectively, into the circulatory system and modulate brain functions 
(Celec et al., 2015; Luine and Frankfurt, 2020). Endogenous androgens 
include androstenedione, testosterone, and 5α-dihydrotestosterone, 
while endogenous estrogens include 17β-estradiol and estrone (Fig. 1). 
Baulieu and colleagues first demonstrated that the nervous system also 
synthesizes steroids (Baulieu, 1998; Corpéchot et al., 1981). Steroids 
that are synthesized in the brain are referred to as “neurosteroids” and 
include neuroandrogens and neuroestrogens. Historically, studies of 
neurosteroids have focused on two brain regions, the hypothalamus and 
hippocampus, and on a few corresponding behaviors, such as aggres-
sion, reproduction, and spatial memory (Hojo and Kawato, 2018; 
Micevych and Sinchak, 2008). Recent studies suggest that other brain 
regions, including nodes of the mesocorticolimbic system (Fig. 2), pro-
duce neuroandrogens and neuroestrogens, possibly to modulate moti-
vation, higher-order cognition, and executive functions (Tobiansky 
et al., 2018). 

In this review, we discuss neurosteroid synthesis and action within 
the mesocorticolimbic system and potential behavioral impacts. We 
provide an overview of the mesocorticolimbic system and its roles in 
executive functions. Next, we summarize recent work that indicates 

local synthesis of neuroandrogens and neuroestrogens within the mes-
ocorticolimbic system, and we describe evidence for expression of 
androgen and estrogen receptors in the mesocorticolimbic system. We 
then highlight key mechanisms by which neuroandrogens, neuro-
estrogens, and other neurosteroids modulate dopamine signaling. 
Finally, we focus on neuroandrogens and gonadal androgens (i.e., pro-
duced in the testes or ovaries), and their effects on working memory and 
behavioral flexibility. 

2. Executive functions and the mesocorticolimbic system 

Executive functions are processes that facilitate selection and 
implementation of goal-directed behaviors. These include more basic 
operations such as selective attention, working memory, response in-
hibition, and action/outcome monitoring that work in concert to regu-
late more complex operations such as cognitive flexibility and cost- 
benefit decision making. Different regions of the prefrontal cortex 
(PFC) play integral roles in mediating these functions, and these areas 
regulate action selection in part through their interactions with striatal 
regions, including the dorsal caudate nucleus and the ventral nucleus 
accumbens (NAc). 

Medial midbrain dopamine neurons originating in the ventral 
tegmental area (VTA) innervate both the medial PFC (mPFC) and NAc 
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(Fig. 2), and dopamine transmission within the mPFC and NAc is critical 
for some of the functions mediated by these two regions. Early studies 
focused on dopamine facilitation of working memory, which is mediated 
primarily by the dopamine D1 receptor (D1R) (Brozoski et al., 1979; 
Floresco, 2013). Higher-order executive functions such as cognitive 
flexibility are also mediated by mPFC and striatal dopamine via complex 
mechanisms involving multiple neuromodulator and neurotransmitter 
actions, including glutamatergic, cholinergic, and dopaminergic systems 
(Jett et al., 2017; Prado et al., 2017). For example, to focus on dopamine, 
during shifts between goal-directed behavioral strategies, dopamine acts 
via the dopamine D2 receptor (D2R) in the mPFC to facilitate suppression 
of old strategies, whereas dopamine acts via D1R in both the mPFC and 
NAc to facilitate establishment and maintenance of new strategies 
(Floresco, 2013; Haluk and Floresco, 2009; Ragozzino, 2002). Similarly, 
dopamine refines cost-benefit decision making, but the specific mecha-
nisms vary across brain regions and are reliant on the specific costs and 
benefits (Cools, 2019; Floresco, 2013; Jenni et al., 2021; Larkin et al., 
2016; Nowend et al., 2001; Schweimer and Hauber, 2006). The critical 
involvement of dopamine in various executive functions suggests that 
neurosteroids that influence dopamine signaling, such as neuro-
androgens and neuroestrogens, may also influence these functions. 

3. The mesocorticolimbic system is steroid-synthetic 

The major nodes of the mesocorticolimbic system each contain all or 
many of the steroidogenic enzymes to synthesize bioactive steroids from 
cholesterol or steroid precursors (e.g., CYP11A1 (cytochrome P450 side 
chain cleavage), 3β-HSD (3β-hydroxysteroid dehydrogenase), CYP17A1 

Fig. 1. Simplified steroidogenic pathway for 
progestogens, androgens, and estrogens. 
StAR (steroidogenic acute regulatory protein) is 
a transport protein that regulates cholesterol 
transport within mitochondria. This is the rate- 
limiting step in the production of steroid hor-
mones. CYP11A1 (cytochrome P450 side chain 
cleavage) localizes to the mitochondrial inner 
membrane and catalyzes the conversion of 
cholesterol to pregnenolone. 3β-HSD (3β- 
hydroxysteroid dehydrogenase) is located in the 
mitochondria or endoplasmic reticulum and 
converts pregnenolone to progesterone (and 
DHEA to androstenedione). The enzyme 
CYP17A1 has 17α-hydroxylase and 17,20-lyase 
activities, is located in the endoplasmic reticu-
lum, and is important for the production of 
androgens. 17β-HSD (17β-hydroxysteroid de-
hydrogenase) is necessary to produce testos-
terone and 17β-estradiol. CYP19A1 (aromatase) 
is necessary to synthesize estrogens from an-
drogens. SRD5A1 (steroid 5α-reductase, 5αR) 
converts testosterone to 5α-dihydrotestosterone 
(DHT), a potent androgen.   

Fig. 2. Simplified sagittal view of projections in the mesocorticolimbic 
system. The VTA sends dopaminergic projections to the NAc, mPFC, and vHPC. 
Glutamatergic hippocampal efferents project to the NAc and mPFC, and glu-
tamatergic mPFC efferents project to the NAc and VTA. mPFC, medial pre-
frontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area; vHPC, 
ventral hippocampus. 
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(cytochrome P450c17), 17β-HSD (17β-hydroxysteroid dehydrogenase), 
CYP19A1 (aromatase); Fig. 1) in both males and females (Giatti et al., 
2019; Tobiansky et al., 2021). For example, CYP17A1 is expressed in the 
mesocorticolimbic system and has 17α-hydroxylase and 17,20-lyase 
activities. These are needed for 2 important steps in the steroidogenic 
pathway: 1) conversion of pregnenolone to DHEA, and 2) conversion of 
progesterone to androstenedione. Thus, CYP17A1 is essential for pro-
duction of androgens, including testosterone and thus DHT, as well as 
estradiol. Under specific circumstances, CYP17A1 also has squalene 
monooxygenase (epoxidase) activity that functions in cholesterol 
biosynthesis (Liu et al., 2005). Moreover, CYP17A1 is also critical for 
cortisol production in the adrenals in humans (Miller and Auchus, 
2011). CYP19A1, or aromatase, is also present in the mesocorticolimbic 
system. It converts testosterone to 17β-estradiol or androstenedione to 
estrone (Fig. 1). CYP19A1 has also been suggested to metabolize estro-
gens into catechol estrogens, thereby inactivating estrogens (Balthazart 
et al., 1994; Balthazart and Ball, 1998; Osawa et al., 1993). Importantly, 
once a steroid is synthesized, it is released into the area where it was 
synthesized (Saldanha et al., 2011). The functions of further steroido-
genic enzymes are described in detail in the legend of Fig. 1. 

Studies have examined steroidogenic enzyme mRNA, protein, and 
activity in the mesocorticolimbic system. Using brain microdissection 
(Palkovits punch) and qPCR to assess mRNA, researchers have shown 
regional differences in Cyp17a1, 17β-HSD, and Cyp19a1 expression in 
male and female rats (Tobiansky et al., 2021). Cyp19a1 mRNA is 
expressed in the PFC of both male and female rats (Hutson et al., 2019). 
Cyp19a1 mRNA levels are lower in the VTA than the mPFC or NAc. In 
contrast, Cyp17a1 mRNA levels are lower in the mPFC than the NAc or 
VTA (Tobiansky et al., 2021). The ontogeny of NAc CYP19A1 protein 
expression in male and female rats has been reported recently (Krentzel 
et al., 2021). Adult male mice (Foidart et al., 1995), and male and female 
rats, also express CYP19A1 protein in the NAc (Krentzel et al., 2021). 
CYP19A1 protein in NAc has not been assessed in female mice, to our 
knowledge. CYP17A1 protein has been detected in the VTA via immu-
nohistochemistry (Nicola et al., 2021). Lastly, few studies have 
measured steroidogenic enzyme activity in the mesocorticolimbic sys-
tem specifically, but CYP19A1 activity is detected in the PFC (MacLusky 
et al., 1986). In summary, there is ample evidence for CYP19A1 
expression in the VTA, NAc and PFC, which indicates that the meso-
corticolimbic system can produce neuroestrogens to influence neural 
function and behavior. 

Steroidogenic enzymes in the mesocorticolimbic system are regu-
lated by gonadal steroids and other factors. Here we provide three ex-
amples. First, in adult male rats, gonadectomy greatly decreases 
Cyp17a1 mRNA levels in the VTA after 2 wk, but they rebound to control 
levels after 6 wk, suggesting a compensatory response to long-term go-
nadectomy (Tobiansky et al., 2018). However, gonadectomy does not 
affect Hsd3b1 or Cyp19a1 mRNA levels in the VTA or other nodes of the 
mesocorticolimbic system (Tobiansky et al., 2018). Second, rat maternal 
sucrose intake during pregnancy and lactation reduces Cyp17a1 mRNA 
levels in the NAc of the adult male, but not female, offspring (Tobiansky 
et al., 2021). Expression of other steroidogenic enzymes in the meso-
corticolimbic system was not affected. This indicates that levels of 
Cyp17a1 mRNA in the mesocorticolimbic system, which might reflect 
production of neuroandrogens, are programmed by maternal diet in a 
sex-specific manner. Importantly, adult male, but not female, offspring 
of dams consuming sucrose show greater motivation to work for a sugar 
reward in a progressive ratio task and greater preference for palatable 
diets in a food preference task. This suggests that a reduction in NAc 
neuroandrogens might increase motivation for sugar and preference for 
palatable foods. Third, in adult male rats, long-term caloric restriction 
has no effects on Cyp17a1, Hsd3b1 or Cyp19a1 mRNA levels in the 
mesocorticolimbic system (Tobiansky et al., 2018). This is valuable data, 
as caloric restriction is often used to increase motivation to work for 
sugar rewards in operant conditioning paradigms (Jenni et al., 2021). 

Little is known about which cell types express steroidogenic enzymes 

in the mesocorticolimbic system. Generally, neurosteroids can be pro-
duced by a variety of cell types, including neurons, astrocytes, oligo-
dendrocytes, and microglia (Xu et al., 2022). The limited availability of 
suitable antibodies and the low steroidogenic enzyme protein levels in 
the brain make this area of research challenging. Some meso-
corticolimbic regions, such as the mPFC that contains glutamatergic 
pyramidal neurons (Floresco, 2013), are largely unexplored in this re-
gard. To our knowledge, it is not known whether mPFC neurons or glia 
express steroidogenic enzymes. This is an important area for future 
investigation. 

In the VTA, tyrosine hydroxylase immunoreactive (TH-ir) neurons 
project to the NAc and mPFC (Fig. 2), and some of these TH-ir neurons 
co-express CYP17A1 (Nicola et al., 2021), which is necessary to syn-
thesize androgens. TH is a key enzyme for dopamine synthesis and is 
regulated by gonadal steroids. The VTA also contains glutamatergic and 
GABAergic neurons, but it is not known whether these neurons express 
steroidogenic enzymes. VTA astrocytes [Glial Fibrillary Acidic Protein 
(GFAP)-immunoreactive cells] do not co-express CYP17A1 (Nicola et al., 
2021). 

Multiple steroidogenic enzymes are expressed in the NAc. GABAergic 
medium spiny neurons are the predominant projection neuron in the 
NAc and express dopamine, glutamate, and cholinergic receptors (Cao 
et al., 2018; Surmeier et al., 2007). These medium spiny neurons also 
co-express 5α-reductase (5αR) type I and 3α-hydroxysteroid dehydro-
genase (3α-HSD), which are needed to synthesize allopregnanolone, in 
adult male mice (Agis-Balboa et al., 2006). However, 5αR type I and 
3α-HSD are not expressed by NAc astrocytes in adult male mice (Agis--
Balboa et al., 2006). In NAc core and shell, CYP19A1 protein is 
expressed in GABAergic medium spiny neurons neonatally, and their 
number increases until adulthood. The proportion of medium spiny 
neurons expressing CYP19A1 increases more quickly in the NAc core 
compared to the shell during prepubertal development. Overall, there 
are no sex differences in NAc CYP19A1 expression; however, as NAc 
core medium spiny neurons are sensitive to estrous cycle phase, (Proaño 
et al., 2020) and 17β-estradiol rapidly modulates glutamatergic and 
dopaminergic signaling in the NAc (Krentzel et al., 2019; Yoest et al., 
2018), it would be useful to examine CYP19A1 expression throughout 
the estrous cycle. In conclusion, neurons in the VTA projecting to the 
NAc and PFC (Fig. 2), as well as medium spiny neurons in the NAc, 
express steroidogenic enzymes to produce neuroandrogens and neuro-
estrogens (Fig. 1). 

Measurements of local steroid levels also suggest that the meso-
corticolimbic system synthesizes steroids. Androgen levels are locally 
elevated in the mesocorticolimbic system relative to blood (Tobiansky 
et al., 2021), when measured with immunoassays or highly specific 
liquid chromatography tandem mass spectrometry (LC-MS/MS) assays. 
First, male and female rats have higher testosterone levels in the VTA 
(2–4 times higher) than in the blood (Tobiansky et al., 2018, 2021). 
Second, after long-term (6 wk) gonadectomy, male rats still contain 
testosterone in the mesocorticolimbic system, but not in the blood 
(Tobiansky et al., 2018). Third, caloric restriction (for 2 or 6 wk) de-
creases circulating and brain levels of testosterone in intact males, and 
caloric restriction also decreases mPFC testosterone levels in gonadec-
tomized males, which lack detectable systemic testosterone. By contrast, 
caloric restriction tends to increase testosterone levels in the NAc and 
the VTA in gonadectomized males. These data suggest that caloric intake 
has region-specific effects on local testosterone synthesis within the 
mesocorticolimbic system (Tobiansky et al., 2018). Fourth, in adult male 
and female rats, testosterone and progestogen levels are higher in the 
mesocorticolimbic system compared to other brain regions (e.g. hippo-
campus) (Sze and Brunton, 2021; Tobiansky et al., 2018). Fifth, acute 
stress rapidly increases neurosteroid levels in the frontal cortex of rats 
(Sze and Brunton, 2021). These results indicate that the brain can locally 
and rapidly adjust neurosteroid levels. 
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4. Steroid receptors in the mesocorticolimbic system 

Different nodes within the mesocorticolimbic system express multi-
ple steroid receptors (Tobiansky and Fuxjager, 2021), but here we focus 
on androgen receptor (AR) and estrogen receptors (ERs) (Fig. 3). There 
are multiple types of ERs present in the mesocorticolimbic system, 
including those encoded by the Esr1 gene (nuclear ERα and the 
post-transcriptionally modified membrane-associated ERα), the Esr2 
gene (nuclear ERβ and the post-transcriptionally modified 
membrane-associated ERβ), and the Gper1 gene (the 
membrane-associated G-protein coupled estrogen receptor-1 or GPER1) 
(Gross and Mermelstein, 2020). In the brain, AR and ERs are expressed 
by neurons and glia (Xu et al., 2022). For decades, researchers failed to 
find many AR and ERs in the mesocorticolimbic circuit (Quigley et al., 
2021). However, with more sensitive techniques, inclusion of females 
and developing animals, and examination of non-nuclear steroid re-
ceptors, recent studies have detected substantial levels of nuclear and 
membrane-associated AR and ERs within mesocorticolimbic regions 
(Becker and Chartoff, 2019; Krentzel et al., 2022; Low et al., 2020, 
2017). 

The AR is present in several regions within the mesocorticolimbic 
system. Ar mRNA is present in the VTA, NAc, and mPFC of male and 
female rats, with high expression in the NAc (Tobiansky et al., 2021; 
Fig. 3), consistent with the observation that androgens reduce dendritic 
spine density of NAc medium spiny neurons (Gross et al., 2018; Huijgens 
et al., 2021; Wallin-Miller et al., 2016). In adult male rats, short-term (2 
wk) and long-term (6 wk) gonadectomy decrease Ar mRNA in the hy-
pothalamus, but interestingly do not affect Ar mRNA in the meso-
corticolimbic system. By contrast, chronic caloric restriction increases 
Ar mRNA in the NAc but not in the hypothalamus (Tobiansky et al., 
2018). Using a very sensitive immunohistochemical technique, Low and 
colleagues were able to detect AR protein in the VTA, NAc, mPFC and 
orbitofrontal cortex (OFC), with subregional differences (e.g., NAc shell 
> NAc core) (Low et al., 2020). Moreover, AR-ir cells decrease with age 
in the mPFC but not in the VTA or NAc (Low et al., 2020). In the mPFC, 
neurons express AR, but not astrocytes (Low et al., 2017). In addition, 
AR-ir cells in the mPFC could be detected in intact males, but not 

gonadectomized males or intact females, even though AR-ir cells could 
be detected in other brain regions in gonadectomized males and intact 
females (Low et al., 2017). It remains unclear whether the 
membrane-associated androgen receptor ZIP9 (Thomas et al., 2018) is 
present in the mesocorticolimbic system. 

Several types of ERs are present in multiple nodes of the meso-
corticolimbic system. Esr1 mRNA is present in VTA, NAc, and mPFC of 
adult male and female rats (Tobiansky et al., 2018; Fig. 3) and is higher 
in the VTA and NAc than in the mPFC (Tobiansky et al., 2021). Nuclear 
ERs are present in the VTA and co-localize with TH (Becker and Chartoff, 
2019), suggesting that estrogens modulate dopamine production. In the 
male and female rat NAc, nuclear ERα expression is age-dependent, with 
high levels in the perinatal period, decreasing levels in the prepubertal 
period, and very low levels in adulthood (Krentzel et al., 2021). NAc 
nuclear ERα expression decreases in a subregion- and sex-specific 
manner (Krentzel et al., 2021). In the NAc core, females express more 
nuclear ERα than males at PND3 and PND20. Overall expression of 
nuclear ERα is higher in perinatal and prepubertal NAc core compared to 
NAc shell. In the NAc shell, nuclear ERα expression did not differ by sex 
during development. In summary, the expression of nuclear ERs in the 
NAc during early development provides a route by which neuro-
estrogens can affect the mesocorticolimbic system (Harp et al., 2020). In 
the NAc of female rats, an electron microscopy study has localized 
membrane-associated ERα on GABAergic medium spiny neurons and on 
GABAergic and dopaminergic terminals (Almey et al., 2022). One 
outstanding issue is whether these ERs are expressed on glutamatergic 
and cholinergic terminals within the NAc. In the mPFC of both males and 
females, Esr1 mRNA is highest perinatally and decreases with age 
(Westberry and Wilson, 2012). 

Esr2 mRNA is very low perinatally and increases with age in the 
mPFC, with higher levels in females than in males (Westberry and 
Wilson, 2012). Thus, ERβ is the main ER in the juvenile mPFC. Inter-
estingly, Esr2 mRNA levels in the mPFC drop sharply with the onset of 
puberty in female rats (Drzewiecki et al., 2021). A change in Esr2 mRNA 
during puberty in males has not been examined yet. Given the diffi-
culties with assessing nuclear and membrane-associated ERβ using an-
tibodies (Snyder et al., 2010), less is known regarding ERβ protein 
expression in the NAc; however, an electron microscopy study has 
identified ERβ in adult female rat NAc (Almey et al., 2015). Knockdown 
of Esr2 (ERβ) mRNA in the NAc attenuates cocaine-seeking behavior, 
suggesting a role for ERβ in reward seeking (Satta et al., 2018). In the 
NAc, the very low levels of nuclear ERα and ERβ in adulthood are 
associated with the expression of membrane-associated ERα and ERβ 
(Almey et al., 2015; Krentzel et al., 2021). Overall, ERα and ERβ are 
present in the mesocorticolimbic system and positioned to influence 
glutamatergic, cholinergic, and dopamine signaling (Low et al., 2020; 
Quigley et al., 2021). 

GPER1 is present in the NAc and VTA (Krentzel et al., 2021; Luo and 
Liu, 2020) of both male and female rats during development and 
adulthood. In the NAc, GPER1 expression is highest in the perinatal and 
prepubertal periods, and decreases during development to low levels in 
adulthood (Fig. 3). GPER1 expression is similar between males and fe-
males. An electron microscopy study of female rat NAc localized GPER1 
expression in GABAergic medium spiny neurons, as well as in 
GABAergic and dopaminergic terminals (Almey et al., 2015), but glu-
tamatergic and cholinergic terminals have not been assessed. The mPFC 
of adult male and female rats has relatively low levels of nuclear ERs, but 
higher levels of GPER1 (Hutson et al., 2019; Tobiansky et al., 2021). 
Overall, the localization of GPER1 in the NAc and mPFC indicates that 
these receptors are well-placed to modulate glutamatergic, dopami-
nergic, and cholinergic transmission within the mesocorticolimbic sys-
tem (Oberlander and Woolley, 2016). In summary, AR and ERs are 
expressed in several critical regions of the mesocorticolimbic system, 
and steroid receptor levels are affected by sex, developmental stage, 
caloric intake, and gonadal hormones. 

Fig. 3. Steroids and steroid receptors in the mesocorticolimbic system of 
adult rats. The illustration shows the ligands testosterone (T) and 17β-estradiol 
(E2) and their levels, as well as their receptor levels in the mesocorticolimbic 
system. Symbols of ligands and receptors are explained at the bottom of the 
figure. High expression is indicated in red, low expression is indicated in blue. 
Levels of T are highest in the VTA, lower in the mPFC, and lowest in the NAc. 
Levels of E2 are highest in the mPFC, lower in the NAc, and lowest in the VTA. 
ERα levels are highest in the NAc, lower in the mPFC, and lowest in the VTA. 
ERβ levels are high in the VTA and NAc, and lower in the mPFC. GPER-1 levels 
are high in the mPFC and lower in the NAc and VTA. mPFC, medial prefrontal 
cortex; NAc, nucleus accumbens; VTA, ventral tegmental area; AR, androgen 
receptor; ERα, estrogen receptor alpha; ERβ, estrogen receptor beta; GPER-1, G- 
Protein associated Estrogen Receptor 1; T, testosterone; E2, 17β-estradiol. 
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5. Androgens and estrogens modulate dopamine signaling 

Dopaminergic signaling is robustly modulated by androgens and 
estrogens at multiple levels and in multiple brain regions (Kokane and 
Perrotti, 2020; Purves-Tyson et al., 2014; Quigley et al., 2021; Yoest 
et al., 2018), as well as glutamatergic (Brady et al., 2022; Maher et al., 
2022) and possibly cholinergic signaling (Krentzel et al., 2022, 2019; 
Proaño et al., 2020; Proaño and Meitzen, 2020). Here we focus on 
dopaminergic signaling. Dopamine signaling is regulated by androgens 
and estrogens across multiple time frames, including short time frames 
(Becker, 1999; Song et al., 2019), which is consistent with non-genomic 
mechanisms of steroid action. While neurosteroids often act via 
non-genomic mechanisms, there is little known regarding neurosteroid 
modulation of dopamine signaling in the mesocorticolimbic system. 
Most studies focus on gonadal androgens and estrogens (e.g., effects of 
gonadectomy) or assume that the effects of exogenous androgens and 
estrogens reflect those of gonadal steroids. However, recent data from 
our laboratories demonstrate that both gonadal steroids and neuro-
steroids modulate dopaminergic signaling (Tomm et al., 2022). 

5.1. Androgens regulate dopamine synthesis 

First, we focus on studies that manipulated peripheral steroids and 
examined effects on dopamine synthesis in the mesocorticolimbic sys-
tem, and second, we highlight studies that manipulated neurosteroids. 
In aged male rats with low circulating testosterone levels, TH-ir is 
reduced in the VTA and NAc core but is increased in the mPFC and 
medial orbitofrontal cortex (MOFC), relative to young male rats (Tomm 
et al., 2018). In young adult male rats, long-term gonadectomy (7 wk) 
does not affect TH-ir in the VTA, NAc, mPFC or lateral orbitofrontal 
cortex (LOFC) but reduces TH-ir in the MOFC (Tomm et al., 2022). In 
contrast, shorter-term gonadectomy (4 wk) increases TH-ir in the pre-
limbic and infralimbic portions of the mPFC (Kritzer, 2003; Fig. 4). 

Inhibition of brain androgen synthesis or action also impacts TH. In 
gonadectomized and intact adult male rats, systemic treatment with the 
CYP17A1 inhibitor abiraterone acetate (for 1 wk) tends to decrease TH- 
ir in the VTA and NAc core (Tomm et al., 2022, Fig. 4) but increases 
TH-ir in the prelimbic mPFC (Tomm et al., 2022). These effects of 
abiraterone acetate in gonadectomized males suggest a neural site of 
action, as abiraterone acetate does cross the blood-brain barrier (Tomm 
et al., 2022). Thus, TH might be modulated by neuroandrogens in a 
region-specific manner (Fig. 4). In addition, the brain-penetrant AR 
antagonist enzalutamide reduces TH-ir in the VTA, although this study 

used intact males and thus cannot directly implicate neuroandrogens 
(Nicola et al., 2021, Fig. 4). These data complement the well-known 
findings that testosterone treatment or gonadectomy alter multiple as-
pects of dopaminergic signaling (Beatty et al., 1982; de Souza Silva 
et al., 2009; Dluzen and Ramirez, 1989; Purves-Tyson et al., 2014; 
Thiblin et al., 1999; Walker, 2001). 

The CYP19A1 (aromatase) knockout mouse model that is unable to 
produce estrogens shows changes in NAc gene expression compared to 
control animals (Shay et al., 2020). In detail, Pts, which encodes an 
enzyme necessary for catecholamine biosynthesis, is down-regulated in 
male and female CYP19A1 knockout mice compared to wild-type con-
trols. Other neurosteroids might also regulate TH, particularly proges-
terone or allopregnanolone, a bioactive neurosteroid derived from 
progesterone. For example, a maternal high-sucrose diet increases pro-
gesterone levels in the brain and reduces TH-ir in the NAc and mPFC 
(Tobiansky et al., 2020). 

5.2. Androgens and estrogens regulate dopamine receptors 

Androgens, estrogens, and glucocorticoids regulate dopamine re-
ceptor subtypes D1R, D2R and D3R depending on age and sex (Andersen 
et al., 1997; Kopec et al., 2018). We are not aware of research that 
specifically manipulated neurosteroids and examined dopamine re-
ceptors, and thus we focus on sex differences, manipulation of periph-
eral steroids, and the effects of early-life stress. During development, 
early-life stress, which alters maternal and offspring steroids, affects 
dopamine receptor expression and binding affinity (Berger et al., 2002; 
Pallarés et al., 2013). During adulthood, dopamine receptor expression 
and binding affinity are modulated by androgens, estrogens, and glu-
cocorticoids (Kaasinen et al., 2001; Lévesque and Di Paolo, 1990; Cabib 
et al., 1998), as detailed below. 

Prenatal and perinatal alterations in steroids program dopamine 
receptor expression in adulthood. Prenatal stress increases D2R protein 
in the mPFC and NAc core but decreases D3R in the NAc core and shell in 
adult male rats (Berger et al., 2002; Henry et al., 1995). Perinatal 
maternal separation has enduring effects on D3R regulation in the mPFC 
and NAc of male but not female rats (Hill et al., 2014). Perinatal expo-
sure to androgens or estrogens also alters dopamine receptors. For 
example, in adult rats, D1R levels in the NAc are higher in males than 
females, but postnatal testosterone treatment reverses this sex difference 
(Elgueta-Reyes et al., 2021). Moreover, the ontogeny of D1R in the NAc 
is different in males and females (Kopec et al., 2018). 

Androgens and estrogens also modulate dopamine receptor distri-
bution and affinity in adulthood. Male rats have higher D1R (but not 
D2R) levels in the NAc than females (Andersen et al., 1997; Hasbi et al., 
2020), and D1R levels in the NAc are modulated by androgens (Elgue-
ta-Reyes et al., 2021). In female rats, D2R levels in the NAc fluctuate 
across the estrous cycle (Yoest et al., 2018), ovariectomy increases D2R 
levels in the NAc, and estradiol treatment reduces D2R levels in the NAc 
(Chavez et al., 2010). By contrast, levels of D1R in the NAc are not 
altered by these treatments in females (Chavez et al., 2010). The ratio of 
D1R to D2R and levels of dopamine receptor homodimers and hetero-
dimers also differ between the sexes, impacting dopamine signaling 
(Cullity et al., 2019; Hasbi et al., 2020). The D1R:D2R ratios in the mPFC 
and ventral striatum are higher in females than in males (Cullity et al., 
2019). In addition, female rats have more D1R-D2R heterodimers 
compared to males (Hasbi et al., 2020). In summary, in the adult brain, 
androgens and estrogens affect dopamine receptor expression, the D1R: 
D2R ratio, receptor dimerization, and receptor binding affinity. 

5.3. Androgens and estrogens modulate dopamine release and 
extracellular dopamine levels 

In this section, we focus on how gonadectomy and manipulation of 
peripheral steroids affect extracellular dopamine levels, as we are not 
aware of any data specifically on the effects of neurosteroids. 

Fig. 4. Experimental effects of gonadal steroids and neurosteroids on 
dopamine signaling in the mesocorticolimbic system. Gonadectomy alters 
dopamine signaling in the mPFC by increasing TH, DA, and burst firing. ABI 
treatment also increases TH in the mPFC. TH in the NAc is reduced by go-
nadectomy and ABI treatment. Gonadectomy also reduces DA in the NAc. 
Reduced testosterone signaling in the VTA by gonadectomy, ABI and ENZ re-
duces TH-immunoreactivity. Gonadectomy reduces DA in the VTA but increases 
burst firing. mPFC, medial prefrontal cortex; NAc, nucleus accumbens; VTA, 
ventral tegmental area; GDX, gonadectomy; TH, tyrosine hydroxylase; DA, 
dopamine; ABI, abiraterone acetate (CYP17A1 inhibitor); ENZ, enzalutamide 
(androgen receptor antagonist). 
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Testosterone regulates dopamine release and extracellular dopamine 
levels. Postnatal testosterone treatment in males and females, and 
postnatal 17β-estradiol treatment in females, increases dopamine 
release in the NAc in adulthood (Elgueta-Reyes et al., 2021). Increased 
dopamine release also occurs after gonadectomy in adult male rats. In 
detail, brief and phasic bursts of TH-ir cells in the VTA cause dopamine 
release in the NAc and mPFC (Lohani et al., 2018). Gonadectomy in-
creases burst firing in VTA cells in a androgen-sensitive and 
estrogen-insensitive manner (Locklear et al., 2017). Furthermore, 
long-term gonadectomy increases PFC extracellular dopamine levels 
(Aubele and Kritzer, 2011). Gonadectomy also increases burst firing in 
PFC cells that project to the VTA, consequently increasing extracellular 
dopamine in the VTA (Aubele and Kritzer, 2012; Locklear et al., 2017). 
In the PFC, extracellular dopamine levels are similar in male and female 
rats at baseline. In addition, the AR antagonist enzalutamide reduces 
dopamine release from the VTA in the ventral hippocampus (Nicola 
et al., 2021). Estrogens in other regions of the brain can also increase 
stimulant-induced dopamine in the NAc (Tobiansky et al., 2016). For 
example, treatment of ovariectomized female rats with estradiol rapidly 
increases cocaine-induced dopamine release in the NAc shell. This effect 
was mediated by ERβ but not ERα and could not be observed in 
gonadectomized males treated with estradiol (Yoest et al., 2019). 

Allopregnanolone (3α,5α-3-hydroxy-5-pregnan-20-one), a positive 
allosteric modulator of GABAA receptors, also modulates dopamine 
release and extracellular dopamine levels. A recent study using fast scan 
cyclic voltammetry reported that allopregnanolone differentially de-
creases dopamine levels in the NAc in male and female rats in response 
to VTA stimulation (Dornellas et al., 2021). Moreover, i.c.v. allopreg-
nanolone administration to male rats increases dopamine release in 
response to morphine in the NAc (Rougé-Pont et al., 2002). 

5.4. Androgens and estrogens affect dopamine reuptake and metabolism 

Dopamine transporter (DAT) levels are also modulated by androgens 
and estrogens. Here we again focus on the effects of gonadectomy and 
peripheral steroid manipulations. Females have higher DAT levels in the 
NAc than males, and female DAT levels vary across the estrous cycle 
(Yoest et al., 2018). The density of DAT in the NAc is reduced by 
ovariectomy and could be rescued by 17β-estradiol treatment (Chavez 
et al., 2010). In females that were exposed to testosterone at postnatal 
day 1 (PND1), DAT expression in the NAc is reduced in adulthood, 
whereas males do not show this effect (Dib et al., 2018). Gonadectomy 
increases extracellular dopamine in the NAc in response to amphet-
amine, suggesting that gonadal steroids decrease DAT expression or 
function (Hernandez et al., 1994). In the mPFC, increasing the concen-
tration of allopregnanolone and inhibiting 5α-R differentially modulates 
the expression of dopamine-metabolizing enzymes and dopamine con-
centrations, particularly in response to ethanol (Dazzi et al., 2002). 
Dopamine is metabolized by catechol O-methyltransferase (COMT), and 
COMT expression is sensitive to 5α-dihydrotestosterone and 17β-estra-
diol (Salih et al., 2008; Schendzielorz et al., 2011). In summary, neu-
rosteroids and gonadal steroids can impact dopamine signaling in the 
mesocorticolimbic system at multiple levels in sex- and age-specific 
manners, although the specific effects of androgens and estrogens syn-
thesized in the brain remain to be elucidated. Future work needs to 
address the specific impact of gonadal vs. neural steroids on dopamine 
synthesis and dopamine signaling. 

6. Neuroandrogens and neuroestrogens modulate executive 
functions 

Androgens and estrogens affect dopamine-sensitive executive func-
tions mediated by the mesocorticolimbic system (Hynes et al., 2020; 
Kritzer et al., 2007; Orsini et al., 2015; Wallin et al., 2015). Here, we 
focus on working memory and behavioral flexibility, both of which are 
critically-dependent on the integrity of different regions of the rodent 

PFC. Studies examining working memory reveal that gonadectomy in 
males impairs the acquisition of a T-maze delayed alternation paradigm 
in a testosterone-sensitive, estradiol-insensitive manner (Kritzer et al., 
2001). Similarly, gonadectomy in male rats impairs working memory in 
an operant response alternation task in a manner that is also 
testosterone-sensitive and estradiol-insensitive, and this negative effect 
on working memory in gonadectomized male rats is correlated with 
increased TH-ir in the mPFC (Kritzer et al., 2007). The effect of go-
nadectomy on working memory parallels its effects on more funda-
mental recognition memory processes, in that this manipulation 
perturbs learning on a novel object recognition task in adult male rats, 
and again this effect is rescued by testosterone but not estradiol (Aubele 
et al., 2008). Furthermore, male gonadectomy in rats impairs working 
memory but not reference memory in the radial arm maze (Spritzer 
et al., 2008). In postmenopausal women, estrogen replacement therapy 
is associated with increased working memory performance in spatial 
and verbal tasks (Duff and Hampson, 2000). In men, the use of anabolic 
androgenic steroids is associated with reduced working memory, sug-
gesting that very high androgen signaling also disrupts working memory 
(Hauger et al., 2020). 

With respect to behavioral flexibility, an initial study reported that 
testosterone treatment increases persistence in chicks (Andrew and 
Rogers, 1972). More recently, researchers have shown that chronic high 
testosterone treatment in male rats impairs behavioral flexibility in 
set-shifting and reversal learning tasks (Wallin and Wood, 2015). 
Moreover, chronic high testosterone treatment in male rats impairs 
behavioral flexibility in a rodent version of the Stroop task (test for 
cognitive control of contextual decision-making) (Wood and Serpa, 
2020). In men, usage of anabolic androgenic steroids is associated with 
poorer cognitive flexibility (Hauger et al., 2020). By contrast, most 
studies examining the effects of reduced testosterone levels on behav-
ioral flexibility use gonadectomy and report little to no effects (Kritzer 
et al., 2007; Tomm et al., 2022). However, one study used the anti-
androgen cyproterone acetate in male rats and found increased behav-
ioral flexibility in a set-shifting task (Thompson and Wright, 1979). 
Local synthesis of testosterone in the mesocorticolimbic system might 
explain why gonadectomy has no or weak effects on behavioral flexi-
bility but cyproterone acetate has an effect (Tobiansky et al., 2018). 

We recently showed that abiraterone acetate, which inhibits 
CYP17A1 activity and thus androgen synthesis in the testes and brain, 
increases behavioral flexibility of male rats in set-shifting and reversal 
learning tasks (Tomm et al., 2022). Importantly, long-term (7 wk) go-
nadectomy has no effects on behavioral flexibility. By contrast, abir-
aterone acetate increases behavioral flexibility, even in gonadectomized 
animals. In the set-shifting task, animals have to disengage from a pre-
viously learned strategy and adopt a new strategy, in order to keep 
earning sugar rewards. Abiraterone acetate reduces the number of total 
errors that rats made during the shift to the new strategy (Fig. 5A). More 
specifically, abiraterone acetate tends to reduce the number of persev-
erative errors (Fig. 5B). In the reversal learning task, abiraterone acetate 
treatment also reduces persistence in a spatial reversal learning operant 
task. Here, total errors during the shift are not affected by abiraterone 
acetate, but perseverative errors are reduced. These effects of systemic 
abiraterone acetate treatment are present in intact and gonadectomized 
male rats (Tomm et al., 2022), suggesting that abiraterone acetate re-
duces neuroandrogens. A decrease in brain testosterone levels would 
lead to decreases in brain DHT and estradiol levels. These behavioral 
effects are associated with an increase in TH-ir in the mPFC. To get a 
better understanding of how neuroandrogens affect these higher-order 
functions, future studies should deliver an AR antagonist or CYP17A1 
inhibitor to specific brain regions in intact and gonadectomized males, 
and then assess behavioral flexibility. In the future, more studies are 
needed that dissect the effects of gonadal androgens and estrogens vs. 
neuroandrogens and neuroestrogens on behavioral flexibility and other 
executive functions. 
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7. Conclusions 

The concepts presented in this review have broad implications for 
understanding the sites of neurosteroid synthesis and action, as well as 
the behavioral functions of neurosteroids. Most studies of neurosteroids 
have focused on steroid synthesis in the hypothalamus and hippocam-
pus, and neurosteroid effects on reproduction, aggression and spatial 
learning and memory. However, several recent studies suggest that 
neurosteroids are also produced and act in the mesocorticolimbic sys-
tem, including the VTA, NAc and PFC. These data include expression of 
steroidogenic enzyme transcripts and proteins in the mesocorticolimbic 
system, as well as high local steroid levels in the mesocorticolimbic 
system relative to systemic steroid levels in the blood. Moreover, steroid 
receptors (including membrane-associated steroid receptors) are 
expressed in the mesocorticolimbic system. These lines of evidence raise 
the prospect that neurosteroids modulate behaviors mediated by the 
mesocorticolimbic system, such as higher-order cognition and executive 
functions. Recent experiments have focused on how gonadally- vs. 
neurally-produced steroids affect executive functions, such as behav-
ioral flexibility, and the emerging data suggest that neurally-produced 
androgens reduce behavioral flexibility in a rat model. These studies 
raise the intriguing possibility of brain-targeted steroid treatments for 
neuropsychiatric diseases characterized by dysregulated dopamine 
signaling or impaired executive functions. 
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