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Abstract
Biological sex and gender are critical variables in biomedical research, but are
complicated by the presence of sex-specific natural hormone cycles, such as the
estrous cycle in female rodents, typically divided into phases. A common feature
of these cycles are fluctuating hormone levels that induce sex differences inmany
behaviors controlled by the electrophysiology of neurons, such as neuronalmem-
brane potential in response to electrical stimulus, typically summarized using a
priori defined metrics. In this paper, we propose a method to test for differences
in the electrophysiological properties across estrous cycle phase without first
defining a metric of interest. We do this by modeling membrane potential data
in the frequency domain as realizations of a bivariate process, also depending
on the electrical stimulus, by adopting existing methods for longitudinal func-
tional data. We are then able to extract the main features of the bivariate signals
through a set of basis function coefficients. We use these coefficients for testing,
adapting methods for multivariate data to account for an induced hierarchical
structure that is a product of the experimental design. We illustrate the perfor-
mance of the proposed approach in simulations and then apply the method to
experimental data.

KEYWORDS
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1 INTRODUCTION

Biological sex and gender are critical variables for biomedi-
cal research, especially for addressing underserved aspects
of women’s health (Arnegard et al., 2020; Galea et al.,
2020; Tannenbaum et al., 2019). Complicating this con-
sideration is the presence of sex-specific natural hormone
cycles in both females and males, such as the men-
strual cycle in female humans and the estrous cycle in
female rodents, which can influence experimental out-
comes (Mamlouk et al., 2020; Proaño et al., 2018). These
cycles can be divided into phases featuring different hor-

mone concentrations. Hormone-level fluctuations induce
sex differences in many behaviors, including those related
to motivation and disorders such as depression and addic-
tion. These behaviors are controlled by the electrophysiol-
ogy of specific neurons that communicate with each other
between designated brain regions via electrical impulses
called action potentials. Thus, it is of high research inter-
est to determine if the properties of neurons change
throughout the estrous cycle.
Themost prominent andwidely employed experimental

procedure is the whole-cell patch clamp (WHPC), which
can analyze how the neuron membrane potential changes
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F IGURE 1 Left: The observed membrane potential curves are shown for all currents (0 to +0.14 nA) injected for one replicate of one
medium spiny neuron from a rat in the diestrus phase of the estrous cycle. Curves corresponding to currents of +0.04, +0.09, and +0.14 nA
are shown in black, red, and green, respectively. Right: The log-periodogram of the membrane potential curves shown in the left panel. The
colored curves correspond to the membrane potential curves shown on the left in the same color. This figure appears in color in the electronic
version of this article, and any mention of color refers to that version.

with various current voltage injected during a fixed period
of time. These electrophysiological properties can be stud-
ied in vitro by measuring the membrane potential of a
neuron in response to artificial stimulus like an electri-
cal current. Proaño et al. (2018) and Cao et al. (2018) are
two examples of these experiments. An example of the
observed membrane potential of a neuron from such an
experiment is shown in the left most plot in Figure 1; the
membrane potential is depicted in response to a constant
amount of current being applied to the neuron starting
at 0 s and ending at 0.6 s for an increasing amount
of current. Application of higher current results in the
membrane potential increasing, and eventually generating
action potentials seen in the plot as spikes.
Existing approaches to analyze such data rely heav-

ily on summaries of the rich data produced by WHPC
experiments. One example of this is the heavy empha-
sis on a priori-defined experimental metrics; while they
have strong neurological justification, they limit analysis
to only those assessed metrics. For example, the observed
membrane potential curves can be summarized using fea-
tures such as action potential frequency and amplitude. A
one-way analysis of variance (ANOVA) or Kruskal–Wallis
test can be used to test for group differences with an
adjustment for multiple comparisons if necessary. Alter-
natively, principal components analysis (PCA) of these
experimental metrics has been used in the analysis of sim-
ilar membrane potential data (Druckmann et al., 2012;
Hernáth et al., 2019). Developing methods that better

account for the complex dependence and structure of these
data may enhance discovery beyond what is possible using
these neurologically relevant metrics.
In this paper, we describe amethod to test for differences

in the distribution of the membrane potential behavior in
response to stimulus between phases of the estrous cycle
in rats that does not require defining a priori metrics of
interest. We accomplish this by working with the peri-
odogram of the observed membrane potential and viewing
it as the realization of a random function observed at
a finite grid of timepoints. There has been a consider-
able amount of development of methods for testing for
distributional differences between groups in independent
functional data. Testing for equality of the mean function
has been proposed by Cuesta-Albertos and Febrero-Bande
(2010), Horváth et al. (2013), Zhang and Liang (2014), and
Zhang et al. (2019). Testing for equality of the covariance
function has been proposed by Fremdt et al. (2013) and
Paparoditis and Sapatinas (2016). More generally, Pomann
et al. (2016) and Wynne and Duncan (2020) tested for
differences in distribution.
A limitation of these testing procedures is that they

require independent functional data. In the motivating
application, multiple neurons are observed from each
rat, and further multiple observations are made on each
neuron. This experimental design naturally induces a hier-
archical structure on the data, and thus, an assumption
of independence is not reasonable. Such clustered data
are commonly modeled using functional mixed effects
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models. For example, Di et al. (2009) developed multilevel
functional PCA (MFPCA); Li et al. (2015) and Xu et al.
(2018) proposed extensions to MFPCA for the analysis of
three-level hierarchies. Testing procedures for clustered
functional data have been proposed as well. Abramovich
and Angelini (2006) and Antoniadis and Sapatinas (2007)
consider testing for mean differences in a mixed model
framework. Staicu et al. (2015) proposed an 𝐿2-norm-based
testing procedure for the group mean differences in clus-
tered data. Xu et al. (2018) introduced a testing procedure
for hierarchically clustered functional data, however
only considered tests of the form of a smooth mean
function.
An additional complication of this motivating dataset

is the importance of the applied electrical stimulus. As
Figure 1 shows, the membrane potential curves can vary
significantly depending on the applied current. We could
incorporate the effect of the stimulus using function-on-
scalar regression (Ramsay & Silverman, 2005). Statistical
inferences for suchmodels have been studiedwithout (Fan
& Zhang, 2000) and with a hierarchical structure (Zhu
et al., 2012) as in the motivating dataset. Such models
require assumptions about the relationship between the
stimulus and the observed membrane potential that may
not be supported by the biological processes responsible
for these data. Alternatively, we estimate this relationship
using a set of empirical basis functions to characterize
this relationship. Specifically, we consider the membrane
potential to be the realization of a latent process that
depends on the stimulus and we will use the eigenfunc-
tions of an appropriate covariance matrix to describe the
variation of the membrane potential associated with the
stimulus. The membrane potentials are observed densely
in time, but for comparatively few unique levels of cur-
rent.Wenote the similarity to longitudinal functional data;
rather than functional observations being made at several
times for each subject, we make functional observations at
several levels of applied current. Thus, we utilize existing
methods for longitudinal functional data (Chen et al., 2017;
Chen & Müller, 2012; Park & Staicu, 2015).
We present the membrane potential variation using the

same data-driven basis with coefficients that depend on
the applied current. The basis coefficients are recovered
as the inner product between the response function and
the estimated basis functions. As a result, they will pre-
serve the dependence of the response profiles. We utilize
methods from longitudinal functional data analysis to esti-
mate the basis system. A multivariate testing procedure
is then applied to the coefficients of the basis function
expansion. To account for the known hierarchical struc-
ture in the data, we approximate the null distribution
of the test statistic by bootstrapping over independent
observational units.

2 DATA DESCRIPTION

The dataset thatmotivates this work is from an experiment
employing WHPC technique to assess the electrophysio-
logical properties of medium spiny neurons in the acute
brain slice preparation of the nucleus accumbens core of
adult female rats (see Proaño et al., 2018 for details). The
overall goal of this experiment was to test the hypothesis
that these properties change across phases of the estrous
cycle. We focus on data generated when the recorded neu-
rons were injected with excitatory current for 0.6 s and the
membrane potential was measured for the duration. The
time series of the measured membrane potentials while
current was being injected was observed. The amount of
current injected started at 0 nA, to provide a reading of the
baseline resting membrane potential of the neuron, and
the current was then increased until there was an observed
decrease in the number of action potentials asmeasured by
the scientist performing the experiment.
The experiment included 26 rats, observed across three

phases of the estrous cycle: diestrus (11), proestrus (8), and
estrus (7). From each rat, one to four neurons are col-
lected, and additionally, there aremultiple replications per
neuron. Thus, the data have a natural nested hierarchi-
cal structure: (i) estrous cycle phase, (ii) rat, (iii) neurons,
and (iv) replicates. For a single replicate within a neu-
ron, the increase in current, typically +0.01 nA, continues
until an observed decrease in action potential frequency,
indicating the limit of the physiological range of the neu-
ron’s response properties. All neurons had at least seven
different, nonzero currents injected with over half of the
neurons receiving at least 18 different currents.
An example of the data collected from a single replica-

tion of a neuron from a rat in the diestrus phase is provided
in Figure 1. The left plot shows the membrane potential
response to all levels of current injected into the neuron.
During current injection, there is an increase in the mem-
brane potential until it plateaus, typical of medium spiny
neurons but not all neuron types. After 0.6 s, the cur-
rent injection stops and the membrane potential returns
to the resting membrane potential. If sufficient current is
applied, causing a large enough depolarization in mem-
brane potential, action potentials can be generated, seen
as rapid spikes in the membrane potential. Once an initial
action potential is generated for fixed level of current, in
this neuron type, they typically repeat at an approximately
constant frequency while current is being applied.
Due to data having both smooth and spiky features

across varying currents, it is reasonable to represent the
data in the frequency domain. We use a Fourier transform
to decompose the current-specific curves into their con-
stituent frequencies and estimate the spectral density for
each curve. Before taking the Fourier transform, all the
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4 LONG et al.

current-specific curves measured on a fixed neuron and
replicate are truncated to focus on a time interval that has
scientific interpretation (see vertical lines in Figure 1). By
restricting to this region, the process is appropriately sta-
tionary in which case the Fourier transformation retains
all the information in the original data. To assess for sensi-
tivity of the results to the selection of this truncation point,
multiple points were considered and had minimal impact
on the subsequent results.
On the right panel in Figure 1, we show the periodogram

of each current-specific membrane potential curve for
a single replicate from a single neuron, on a log scale.
When the current injected to the neuron is such that no
action potentials are generated, the log-periodogram has
a spike at a frequency of 0 with very small values at all
other frequencies.With increasing current causing a larger
depolarizing change in themembrane potential, and even-
tually causing the generation of action potentials, the value
of the log-periodogram at higher frequencies increased.
As seen in the periodogram plot in Figure 1, the fixed-

current spectral profiles look like a noisy realization of
smooth monotone decreasing signals. To account for the
different current levels, we view the log-periodogram to
be a realization of a bivariate function depending on both
the frequency and the current applied to the neuron. In
Figure 2, the log-periodogram is shown as a bivariate func-
tion for three neurons in the diestrus and estrus phases. It
appears that the log-periodograms from the diestrus group
have higher values at lower currents and low frequencies
than those from the estrus group. If there are differences in
the electrophysiological properties of the neuron across the
phases of the estrous cycle, we expect those to be exhibited
by differences in the bivariate log-periodogram.

3 STATISTICAL FRAMEWORK

3.1 Model framework

Consider the following hierarchical data: for each group
𝑔 = 1,… , 𝐺, we observe measurements on a number of
units 𝑟 = 1,… , 𝑛𝑔, and for each subunit 𝑖 = 1, … , 𝑛𝑔𝑟 within
a unit, the observed data are [{(𝑡𝑔𝑟𝑖,𝑘, 𝑢𝑔𝑟𝑖,𝓁), 𝑌𝑔𝑟𝑖,𝑘𝓁}(𝑘,𝓁)]𝑖 ,
where 𝑘 = 1,… , 𝐾𝑔𝑟𝑖 and 𝓁 = 1,… , 𝐿𝑔𝑟𝑖 . We assume that
𝑌𝑔𝑟𝑖,𝑘𝓁 is an evaluation of a bivariate function observed
with noise at (𝑡𝑔𝑟𝑖,𝑘, 𝑢𝑔𝑟𝑖,𝓁); in other words, let 𝑋𝑔𝑟𝑖(⋅, ⋅) ∶
 × → ℝ, such that 𝑌𝑔𝑟𝑖,𝑘𝓁 = 𝑋𝑔𝑟𝑖(𝑡𝑔𝑟𝑖,𝑘, 𝑢𝑔𝑟𝑖,𝓁) + 𝜖𝑔𝑟𝑖,𝑘𝑙,
where 𝜖𝑔𝑟𝑖,𝑘𝑙 is measurement error. We assume that 𝐾𝑔𝑟𝑖 is
large and the grid of points {𝑡𝑔𝑟𝑖,𝑘 ∶ 𝑘} is fine in  and con-
sider the case when 𝐿𝑔𝑟𝑖 is small for each 𝑖, but {𝑢𝑔𝑟𝑖,𝓁 ∶
𝓁, 𝑖, 𝑟, 𝑔} is dense in  . In our data application, 𝑔 denotes
estrous cycle phase, 𝑟 denotes rat, 𝑖 denotes replicatewithin
rat, and 𝑌𝑔𝑟𝑖,𝑘𝓁 is the log-periodogram at frequency 𝑡𝑘 and

current 𝑢𝓁; we do not explicitly account for the neuron
level to simplify notation. Regarding current, we directly
use a normalized current based on the maximum cur-
rent for each observation and take = [0, 1]. By an abuse
of notation, we assume that 𝑋𝑔𝑟𝑖(⋅, ⋅)

𝑑
= 𝑋𝑔(⋅, ⋅) for all 𝑟, 𝑖,

where the notation
𝑑
= denotes that the random quantities

have the same distribution. This is justified because all
neurons belong to the same region of the brain and infor-
mation such as relative location of neurons is lost due to
the collectionmethods.Our objective is to develop a testing
procedure to formally assess

𝐻0 ∶ 𝑋1(⋅, ⋅)
𝑑
= …

𝑑
= 𝑋𝐺(⋅, ⋅), (1)

versus the alternative that 𝑋𝑔(⋅, ⋅)
𝑑

≠ 𝑋𝑔′(⋅, ⋅) for some 𝑔 ≠

𝑔′ = 1,… , 𝐺.
Testing the equality of a group of curves is not new; for

example, Staicu et al. (2014), Pomann et al. (2016), and
Zhang et al. (2019) study this problem for independent
and/or univariate curves. In our situation, the bivariate
structure of the curves, with mixed dense/sparse sampling
design, along with the complex hierarchical dependence
increase the challenge.
We propose to model 𝑋𝑔𝑟𝑖(𝑡, 𝑢) = 𝜇(𝑡, 𝑢) + 𝑉𝑔𝑟𝑖(𝑡, 𝑢),

where 𝜇(𝑡, 𝑢) is the overall mean function and
𝑉𝑔𝑟𝑖(𝑡, 𝑢) is the subunit deviation. Let {𝜙𝑝(⋅)}𝑝≥1 be
an orthonormal basis in 𝐿2( ) and represent the devi-
ations as 𝑉𝑔𝑟𝑖(𝑡, 𝑢) =

∑∞

𝑝=1
𝜉𝑔𝑟𝑖,𝑝(𝑢)𝜙𝑝(𝑡) where the

𝜉𝑔𝑟𝑖,𝑝(𝑢) = ∫

𝑉𝑔𝑟𝑖(𝑡, 𝑢)𝜙𝑝(𝑡)𝑑𝑡 are the corresponding

basis coefficients that have mean zero and are uncorre-
lated across 𝑔, 𝑟, and 𝑝. As in Chen and Müller (2012),
Park and Staicu (2015), and Chen et al. (2017), we then
propose a similar decomposition of the 𝜉𝑔𝑟𝑖,𝑝(𝑢)’s. That
is, 𝜉𝑔𝑟𝑖,𝑝(𝑢) =

∑∞

𝑞=1
𝜁𝑔𝑟𝑖,𝑝𝑞𝜓𝑝𝑞(𝑢) where {𝜓𝑝𝑞(⋅)}𝑞≥1 is

an orthonormal basis in 𝐿2( ) and the 𝜁𝑔𝑟𝑖,𝑝𝑞’s are
the corresponding basis coefficients that are mean
zero. Thus, combining all components, we obtain
𝑉𝑔𝑟𝑖(𝑡, 𝑢) =

∑∞

𝑝=1

∑∞

𝑞=1
𝜁𝑔𝑟𝑖,𝑝𝑞𝜙𝑝(𝑡)𝜓𝑝𝑞(𝑢).

There are typically two possible ways to select the
basis system for the above representation. One option
is to use a prespecified set of basis functions. We pur-
sue a different option: we select {𝜙𝑝(⋅)}𝑝≥1 to be the
eigenbasis of the marginal covariance function Σ (𝑡, 𝑡′) =
∫

Σ(𝑡, 𝑡′, 𝑢, 𝑢)𝑓(𝑢)𝑑𝑢, where 𝑓(⋅) is the sampling den-

sity of 𝑢; similar to Park and Staicu (2015). We also select
{𝜙𝑝,𝑞(⋅)}𝑞≥1 to be the eigenbasis of the covariance of the
coefficients of the initial decomposition, Σ ,𝑝(𝑢, 𝑢

′) =

𝐶𝑜𝑣{𝜉𝑔𝑟𝑖,𝑝(𝑢), 𝜉𝑔𝑟𝑖,𝑝(𝑢
′)}. This representation allows us to

explain the variation in the bivariate functional data by
sets of eigenfunctions for each argument, 𝑡 and 𝑢, sepa-
rately. Furthermore, this framework allows us to extract
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LONG et al. 5

F IGURE 2 Log-periodogram across current and frequency for three neurons from a single rat in the diestrus (top row) and estrus phase
(bottom). This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

the main features of the bivariate signals through the set
of basis function coefficients. This approach has recently
been considered by Scheffler et al. (2018).
In practice, we truncate the infinite basis functions; let

𝑃 and𝑄1,… , 𝑄𝑃 denote the truncation for the bases {𝜙𝑝(⋅)}
and {𝜓𝑝,𝑞(⋅)}, respectively. It follows that the vector 𝜻𝑔𝑟𝑖 =
(𝜻 𝑇
𝑔𝑟𝑖,1

, … , 𝜻 𝑇
𝑔𝑟𝑖,𝑃

)𝑇 , where 𝜻𝑔𝑟𝑖,𝑝 = (𝜁𝑔𝑟𝑖,𝑝1, … , 𝜁𝑔𝑟𝑖,𝑝𝑄𝑝 )
𝑇 , rep-

resents a feature extraction of the bivariate signal,𝑋𝑔𝑟𝑖(⋅, ⋅).
We thus reduce the testing the null hypothesis (1) to the
hypothesis that the distribution of the 𝜻𝑔𝑟𝑖 is not varying
across the groups. That is, assume 𝜻𝑔𝑟𝑖 ∼ 𝑓𝑔 where𝑓𝑔 is any

probability distribution with sample space ℝ
∑𝑃
𝑝=1 𝑄𝑝 that

depends on the group, 𝑔; the null hypothesis of interest is
reduced to

𝐻0 ∶ 𝑓1 = ⋯ = 𝑓𝐺. (2)

In this regard, we consider testing procedures from the
multivariate statistics literature; to account for the hier-
archical dependence in the data, we propose a bootstrap-
based null distribution approximation.
In the next section, we discuss estimation of the model

components, including selection of the number of basis

functions and estimation of the basis function coefficients.
In Section 4, we describe the testing procedure.

3.2 Estimation

The roadmap of the estimation procedure is: first, estimate
the marginal mean function. Using the centered data, we
then estimate the marginal covariance function Σ (𝑡, 𝑡

′)

and its eigencomponents. The coefficients of this initial
decomposition are then used to estimate the marginal
covariance functions, Σ ,𝑝(𝑢, 𝑢

′), and their eigencompo-
nents. We utilize existing methods for the estimation of all
model components; additional details of thesemethods are
provided in the Supporting Information.
We estimate themarginalmean function𝜇(𝑡, 𝑢) by using

the bivariate sandwich smoother (Xiao et al., 2013) and
a working independence assumption. In the numerical
investigation, we use the sandwich smoother constructed
using cubic B-spline basis functions for 𝑡 and 𝑢 and select
the tuning parameters by generalized cross validation
(GCV).
Let 𝑌𝑔𝑟𝑖,𝑘𝓁 = 𝑌𝑔𝑟𝑖,𝑘𝓁 − 𝜇(𝑡𝑘, 𝑢𝓁) be the demeaned data.

We use the demeaned data to first estimate the marginal
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6 LONG et al.

covariance function Σ (𝑡, 𝑡′). To estimate this covariance
function, and subsequently, the eigenfunctions of this
covariance, we use the fast covariance estimation, or FACE
estimator, (Xiao et al., 2016) that is a smoothing of the
traditional sample covariance,

𝑆(𝑡, 𝑡′) =

𝐺∑
𝑔=1

𝑛𝑔∑
𝑟=1

𝑛𝑔𝑟∑
𝑖=1

𝐿𝑔𝑟𝑖∑
𝓁=1

𝑌𝑔𝑟𝑖(𝑡, 𝑢𝓁)𝑌𝑔𝑟𝑖(𝑡
′, 𝑢𝓁)

/
(

𝐺∑
𝑔=1

𝑛𝑔∑
𝑟=1

𝑛𝑔𝑟∑
𝑖=1

𝐿𝑔𝑟𝑖

)
.

This estimator is a special case of the sandwich smoother
used to estimate the mean function. As with the sand-
wich smoother, this method depends on a smoothing
parameter that can be selected using GCV. The final esti-
mator is adjusted to be symmetric and positive definite
by zeroing the negative eigenvalues. Let {𝜙𝑝(⋅), 𝜆𝑝}𝑝≥1
be the pairs of estimated eigenfunctions and eigenval-
ues obtained by spectral decomposition of the smoothed
estimate of Σ (⋅, ⋅). The truncation parameter, 𝑃, can be
determined based on a prespecified percentage of variance
explained (PVE) using the estimated eigenvalues (Di et al.,
2009).
Let 𝜉𝑔𝑟𝑖,𝑝(𝑢𝓁) = ∫ 𝑌𝑔𝑟𝑖(𝑡, 𝑢𝓁)𝜙𝑝(𝑡)𝑑𝑡 be the estimated

coefficient of the 𝑝th eigenfunction for the 𝓁th current
applied to the 𝑖th neuron in the 𝑔th group and 𝑟th rat;
𝜉𝑔𝑟𝑖,𝑝(𝑢𝓁) can be approximated well via numerical inte-
gration because {𝑡𝑔𝑟𝑖,𝑘 ∶ 𝑘} is dense in  . We use these
estimated coefficients separately for each 𝑝 to estimate
Σ ,𝑝(𝑢, 𝑢

′) and its eigencomponents. As the data need not
be observed on a regular grid in  as in  , we estimate
Σ ,𝑝(𝑢, 𝑢

′) and its eigencomponents using methods for
sparse functional data (Yao et al., 2005) instead of using
the same method for estimating Σ (𝑡, 𝑡′). This approach
also obtains a smoothed estimate ofΣ ,𝑝(𝑢, 𝑢

′) by smooth-
ing the raw covariances, here calculated as 𝑆𝑝,𝑔𝑟𝑖(𝑢𝓁, 𝑢𝓁′) =
𝜉𝑔𝑟𝑖,𝑝(𝑢𝓁)𝜉𝑔𝑟𝑖,𝑝(𝑢𝓁′). Let {𝜓𝑝𝑞(⋅), 𝛾𝑝𝑞}𝑞≥1 be the pairs of esti-
mated eigenfunctions and eigenvalues obtained by spectral
decomposition of the smoothed estimate of Σ ,𝑝(⋅, ⋅). As
when choosing 𝑃, the truncation parameters, 𝑄𝑝, can be
determined using PVE. Upon estimation of the eigenfunc-
tions ofΣ ,𝑝(⋅, ⋅), the scores, 𝜁𝑔𝑟𝑖,𝑝𝑞, can be estimated using
amixedmodel framework as described in Yao et al. (2005).

4 TESTING PROCEDURE

In this section, we describe the testing procedure. Recall
that the null hypothesis of interest (1) is simplified to the
null hypothesis that the vector of basis function coeffi-
cients has the same distributions across groups; see null

hypothesis (2). When considering the alternative hypothe-
sis, whilewe emphasizedmodeling themarginalmean and
covariance functions (Section 3.2), wemake no restrictions
on how the distributions may differ between groups.
To test this hypothesis, 𝑘-sample multivariate testing

procedures can be used. Examples of such testing proce-
dures are Bathke et al. (2008) and Heller et al. (2013). We
use the Heller–Heller–Gorfine (HHG) test (Heller et al.,
2013) because of its minimal assumptions and sensitivity
to many forms of deviations from the null hypothesis; we
do note that many other multivariate tests can be used
similarly depending on the objectives of the analysis. This
test statistic is based on all pairwise norm differences of
the data. We describe this test as if the vector of basis
coefficients were known; in practice, we replace the basis
coefficients by their estimates obtained as described in Sec-
tion 3.2. Consider a fixed pair of observations, indexed by
(1) 𝑔, 𝑟, and 𝑖 and (2) 𝑔′, 𝑟′, and 𝑖′, with 𝑖 ≠ 𝑖′; denote
the norm difference between the estimated coefficients for
these two observations, 𝑅0 = ‖𝜻𝑔𝑟𝑖 − 𝜻𝑔′𝑟′𝑖′‖. This value 𝑅0
depends on the indices 𝑔, 𝑔′, 𝑟, 𝑟′, 𝑖, 𝑖′, but we suppress this
dependence until the end for notational simplicity. Using
𝑅0, we can create and summarize a 2 × 𝐺 contingency table
using the remaining data as follows. For 𝑔∗ = 1,… , 𝐺, let

𝐴1𝑔∗ =

𝐺∑
𝑔′′=1

𝑛𝑔∑
𝑟′′=1

𝑛𝑔𝑟∑
𝑖′′=1

𝐼(‖𝜻𝑔𝑟𝑖 − 𝜻𝑔′′𝑟′′𝑖′′‖ > 𝑅0)𝐼(𝑔
′′ = 𝑔∗) and

𝐴2𝑔∗ =

𝐺∑
𝑔′′=1

𝑛𝑔∑
𝑟′′=1

𝑛𝑔𝑟∑
𝑖′′=1

𝐼(‖𝜻𝑔𝑟𝑖 − 𝜻𝑔′′𝑟′′𝑖′′‖ ≤ 𝑅0)𝐼(𝑔
′′ = 𝑔∗).

Additionally, denote by 𝐴𝑖∗⋅ and 𝐴⋅𝑔∗ the row and column
sums. Lastly, denote by𝑇(𝑔𝑟𝑖; 𝑔′𝑟′𝑖′) the Pearson’s score for
this partition; that is,

𝑇(𝑔𝑟𝑖; 𝑔′𝑟′𝑖′) =

2∑
𝑖∗=1

𝐺∑
𝑔∗=1

(𝐴𝑖∗𝑔∗ − 𝐸𝑖∗𝑔∗)
2

𝐸𝑖∗𝑔∗

where 𝐸𝑖∗𝑔∗ =
𝐴𝑖∗⋅𝐴⋅𝑔∗∑𝐺

𝑔=1

∑𝑛𝑔
𝑟=1 𝑛𝑔𝑟

.

The overall test statistic for the sample can be
found by summing over all pairs; that is, 𝑇𝐻𝐻𝐺 =∑𝐺

𝑔,𝑔′=1

∑𝑛𝑔
𝑟,𝑟′=1

∑𝑛𝑔𝑟
𝑖,𝑖′=1;𝑖≠𝑖′ 𝑇(𝑔𝑟𝑖; 𝑔

′𝑟′𝑖′).
Heller et al. (2013) developed the null distribution, and

considered an approximation based on random permu-
tations of the group assignments, of the classical HHG
test under the assumption that the observations within a
group are independent and identically distributed. This
assumption does not hold in our case, where recall we
only assume independence of𝑋𝑔𝑟𝑖(⋅, ⋅) over 𝑟; applying the
testing procedure while ignoring the dependence results
in an inflated type I error. We propose a bootstrap-based
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LONG et al. 7

A l g o r i t hm 1 Resampling of the unit level data

1: for b ∈ {1, . . . , B} do
2: Re-sample the group-unit index pairs from {(1, 1), . . . , (1, n1), . . . , (G, nG)} with

replacement. Let R(b) be the resulting sample
3: Define the bth bootstrap data by:

data(b) = [{Yg∗r∗i,k�}(k,�) : (g∗, r∗) ∈ R(b), i = 1, . . . , ng∗r∗ ]
4: Reassign the group indices by unit, so that g = 1 for the first n1 units, g = 2 for the

next n2 units, and so on. Re-define the bth bootstrap data accordingly.
5: Using data(b), estimate the model components and recover the estimated coefficient

vectors, ζ̂
(b)

gri, as described in Section 3.2

6: Calculate the HHG test statistic and denote it by T
(b)
HHG

7: end for
8: Calculate the p-value as

∑B
b=1 I(T

(b)
HHG > THHG)/B

approach to approximate the null distribution of the HHG
test by modifying the permutation procedure to account
for the hierarchical structure of the data; see Algorithm 1.
For each permutation iteration, the observed data are
resampled with replacement by unit-level identifier. We
briefly comment on step 5 of Algorithm 1; reestimation
of model components with each iteration is computation-
ally burdensome, although it is necessary to prevent the
results of the test from being conditional on the estimated
eigenfunctions and better accounts for the uncertainty of
that estimation step. The test statistic calculated using the
observed data is then compared to the distribution of test
statistics after resampling; a p-value is estimated by the
sample proportion of observing a value of the test statistic
as large or larger in the bootstrap set of statistics.

5 SIMULATION STUDY

In this section, we present simulation studies to illus-
trate the performance of our proposed approach described
in Section 3. We consider two distinct frameworks. First,
we generate multivariate data to isolate the performance
of the resampling method in a simpler setting. Then we
generate functional data to assess the performance of the
entire method as presented. For both frameworks, we
describe the scenarios used to assess the performance
of our method, introduce comparative approaches, and
present the results.

5.1 Framework 1: Multivariate data

5.1.1 Generation of multivariate data

We evaluate the performance of the proposed approach by
first generating data such that the null hypothesis of inter-
est, that the distributions of the responses are the same

across groups, is true to evaluate the type I error rate; we
also generate data under different forms of deviations from
the null hypothesis to assess power.
We generate data 𝑌𝑔𝑖𝑗𝑘 ∈ ℝ𝑃 as

𝑌𝑔𝑖𝑗𝑘,𝑝 = 𝛼𝑔𝑖,𝑝 + 𝛽𝑔𝑖𝑗,𝑝 + 𝜖𝑔𝑖𝑗𝑘,𝑝, 𝑝 = 1,…𝑃, (3)

where 𝑔 = 1,… , 3, 𝑖 = 1, … , 𝑛1, 𝑗 = 1,… , 𝑛2, and 𝑘 =

1,… , 3 are indices for the observations that induce the
hierarchical structure. The model components are gen-
erated according to 𝛼𝑔𝑖,𝑝 ∼ 𝑁(0, 𝜎2𝛼,𝑝), 𝛽𝑔𝑖𝑗,𝑝 ∼ 𝑁(0, 𝜎2

𝛽,𝑝
),

and 𝜖𝑔𝑖𝑗𝑘,𝑝 ∼ 𝑁(0, 𝜎2𝜖,𝑝). Further, 𝛼𝑔𝑖,𝑝, 𝛽𝑔𝑖𝑗,𝑝, and 𝜖𝑔𝑖𝑗𝑘,𝑝
are mutually independent and are independent across all
indices. The hierarchical structure induced by this model
is analogous to the structure of the motivating dataset
described in Section 2: 𝑔 denotes estrous cycle phase, 𝑖
denotes rat, 𝑗 denotes neuron, and 𝑘 denotes replicate. The
sample sizes included for the simulations are reflective of
the size of the motivating dataset; 𝑛1 = 7, 10 and 𝑛2 = 3, 5.
For the dimensions of 𝑌𝑔𝑖𝑗𝑘, we consider 𝑃 = 2 and

5. When 𝑃 = 2, we borrow from Scenario 1 in Xu
et al. (2018) to specify the variances of the components
in (3). Thus, we let (𝜎2𝛼,1, 𝜎

2
𝛼,2) = (1, 0.25), (𝜎2

𝛽,1
, 𝜎2

𝛽,2
) =

(0.5, 0.25), and (𝜎2𝜖,1, 𝜎
2
𝜖,2) = (5, 0.5).When considering𝑃 =

5, we instead let (𝜎2𝛼,1, … , 𝜎
2
𝛼,5) = (1, 0.5, 0.33, 0.25, 0.2) and

𝜎2
𝛽,𝑝

= 𝜎2𝜖,𝑝 = 𝜎2𝛼,𝑝.
To assess power performance, we generate data from

three types of alternative hypotheses. First, we consider
a shift in the mean: 𝑌𝑔𝑖𝑗𝑘,𝑝 = 𝜇𝑔 + 𝑌𝑔𝑖𝑗𝑘,𝑝 where 𝑌𝑔𝑖𝑗𝑘,𝑝
is as in (3), 𝜇1 = 0, 𝜇2 = 𝛿, and 𝜇3 = −𝛿, and 𝛿 > 0 con-
trols the difference in the element-wise mean between
groups. Second, we consider a shift in the second moment
which we do in two ways. We slightly modify model (3) by
generating𝛼1𝑖,𝑝 ∼ 𝑁(0, 𝜎2𝛼,𝑝 + 𝛿). Alternatively,we instead
modify model (3) by generating 𝛽1𝑖𝑗,𝑝 ∼ 𝑁(0, 𝜎2

𝛽,𝑝
+ 𝛿). In

the first setting, 𝛿 controls the difference in the intersub-
ject variance between the first group and the remaining
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8 LONG et al.

two groups, whereas in the second setting, 𝛿 controls the
difference in the intrasubject variance. Finally, we con-
sider a shift in the third moment, modifying model (3)
by first generating 𝛼1𝑖,𝑝 ∼ 𝜒2

𝛿
and −𝛼2𝑖,𝑝 ∼ 𝜒2

𝛿
and then

standardizing these variables, so they aremean 0with vari-
ance 𝜎2𝛼,𝑝, that is so the mean and variance are the same
across groups. Concurrently, we make analogous changes
for 𝛽𝑔𝑖𝑗,𝑝 and 𝜖𝑔𝑖𝑗𝑘,𝑝. Overall, for this setting, the coeffi-
cients for one group are generated to be positively skewed,
the coefficients for another are to be negatively skewed,
and the coefficients for the final group are to directly fol-
lowmodel (3) and thus are not skewedwhile 𝛿 controls the
difference in the skewness between groups.

5.1.2 Competing methods and metrics

To evaluate the resampling-based testing methodol-
ogy when using multivariate data, we implement the
proposed method, denoted by HHG-CB, using the
hhg.test.k.sample() function in the R package HHG
to calculate the HHG test statistic (Brill & Kaufman,
2019).
As comparative methods, we also consider the clas-

sic multivariate ANOVA (MANOVA), implemented using
the manova() function in the R package stats (R Core
Team, 2019) with Pillai’s trace statistic for its robust-
ness properties. MANOVA relies on independence across
observations, which is obviously violated in this setting.
Thus, we also consider an extension of the MANOVA
by approximating the null distribution using the same
resampling-based approach used for the primary method
(denote by MANOVA-CB). We also borrow from the
approach described in Pomann et al. (2016) and use an
element-wise Anderson–Darling (AD) test with a Bon-
ferroni adjustment for multiple comparisons; this is a
conservative adjustment, and we consider it due to the
small number of comparisons. TheAD test is implemented
using the ad.test() function in the R package kSam-
ples (Scholz & Zhu, 2019). Lastly, we also consider the
clustered Wilcoxon rank sum test (CW), separately for
each element in the random vector (Datta & Satten, 2005).
As with the AD test, we use a Bonferroni adjustment
for multiple comparisons. This is implemented using the
clusWilcox.test() function in the R package clusrank
(Jiang, 2018).
The performance of each method is evaluated using

the estimated type I error rates and power, each cal-
culated as the average proportion of rejections of
the null hypothesis across Monte Carlo replicates.
When assessing type I error rates, we use 5000 Monte
Carlo replicates; when assessing power, we use 1000
Monte Carlo replicates. When necessary, we use 1000

replicates to approximate the null distribution by
resampling.

5.1.3 Results

In the interest of space, all tables and figures for this
section are provided in the Supporting Information; the
results and interpretation are very similar to those pre-
sented in Section 5.2.3 when considering functional data.

5.2 Framework 2: Functional data

5.2.1 Generation of functional data

We generate hierarchically clustered functional data
according to the model

𝑌𝑔𝑖𝑗𝑘(𝑡, 𝑢) =

2∑
𝑝=1

𝑄𝑝∑
𝑞=1

𝜁𝑔𝑖𝑗𝑘,𝑝𝑞𝜙𝑝(𝑡)𝜓𝑝𝑞(𝑢) + 𝜀𝑔𝑖𝑗𝑘(𝑡, 𝑢), (4)

where 𝑄1 = 3 and 𝑄2 = 2 and the indices are as described
in the multivariate setting. The vector of coefficients
𝜻𝑔𝑖𝑗𝑘 = (𝜁𝑔𝑖𝑗𝑘,11, 𝜁𝑔𝑖𝑗𝑘,12, 𝜁𝑔𝑖𝑗𝑘,13, 𝜁𝑔𝑖𝑗𝑘,21, 𝜁𝑔𝑖𝑗𝑘,22) is gener-
ated according to model (3) under the null hypothesis. The
functions 𝜙𝑝(𝑡) and 𝜓𝑝𝑞(𝑢) are taken to be the leading
eigenfunctions estimated using the motivating dataset so
that the data used in the simulations mimic the data in
the motivating dataset. Additionally, 𝜀𝑔𝑖𝑗𝑘(𝑡, 𝑢) is a white
noise process, independent of 𝜻𝑔𝑖𝑗𝑘, with zero mean and
variance equal to 𝜎2𝑊𝑁 ; 𝜎

2
𝑊𝑁 is chosen to correspond

to a signal-to-noise ratio (SNR) of 5. We use an equis-
paced grid of 100 locations for 𝑡 ∈ [0, 1] and an equispaced
grid of 10 locations for 𝑢 ∈ [0, 1]; the domains  and
 are rescaled after estimating the eigenfunctions for
simplicity.
As in the multivariate setting, we also generate func-

tional data when the null hypothesis is not true to assess
statistical power. We generate these functional data by
modifying the generation of the coefficients as described in
Section 5.1.1 for themultivariate setting.We again consider
differences in the mean, inter- and intrasubject variance,
and skewness.
In this functional data framework, we also consider the

performance of the proposed method under a nonadditive
data-generating mechanism. In this setting, we again
consider functional data generated using model (4);
however, we modify the generative model for 𝜻𝑔𝑖𝑗𝑘. In
lieu of model (3), we instead generate the coefficients as
𝜁𝑔𝑖𝑗𝑘,𝑝 = 𝛼𝑔𝑖,𝑝 + 𝛽𝑔𝑖𝑗,𝑝 + 𝜖𝑔𝑖𝑗𝑘,𝑝 + 𝛼𝑔𝑖,𝑝𝛽𝑔𝑖𝑗,𝑝, where 𝛼𝑔𝑖,𝑝,
𝛽𝑔𝑖𝑗,𝑝, and 𝜖𝑔𝑖𝑗𝑘,𝑝 are as defined above. To assess power in
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LONG et al. 9

TABLE 1 Estimated type I error rates for the methods
described in Section 5.2.2 when applied to functional data based on
5000 replicates. Nominal type I error rate is 0.05. Standard errors
< 0.004.

𝒏𝟏 𝒏𝟐 HHG-CB MANOVA-CB CW
7 3 0.042 0.058 0.002
10 3 0.042 0.055 0.004
7 5 0.040 0.058 0.003
10 5 0.043 0.055 0.005

this setting, we consider differences in the mean similar
to those described above.

5.2.2 Competing methods and
implementation

For the purposes of testing, after estimation of the coeffi-
cients {𝜁𝑔𝑖𝑗𝑘,𝑝𝑞}, we utilize themultivariate testingmethods
and implement them as described in Section 5.1.2; we
again assess the type I error rates and power. We now dis-
cuss the implementation of the modeling step to estimate
the necessary eigenfunctions and coefficients using func-
tions available in the R package refund (Goldsmith et al.,
2018). We first estimate the common bivariate mean func-
tion 𝜇(⋅, ⋅) using the fbps() function and center the data.
Then, we estimate {𝜙𝑝(⋅)}𝑝≥1 and coefficients {𝜉𝑔𝑖𝑗𝑘,𝑝(𝑢)}
using the fpca.face() function. We select the trunca-
tion parameter 𝑃 using a 95% PVE threshold. Finally, we
estimate {𝜓𝑝𝑞(⋅)}𝑞≥1 and coefficients {𝜁𝑔𝑖𝑗𝑘,𝑝𝑞} using the
fpca.sc() function. The truncation parameters 𝑄𝑝 are
also selected using a 95% PVE threshold.

5.2.3 Results

We first consider the simulation results when data are
generated so that there are no distributional differences
across groups. The estimated type I error rates are shown
in Table 1. The estimated type I error rates for the HHG-CB
and MANOVA-CB methods are close to the nominal rate,
whereas the CWmethod is much more conservative.
We next consider the estimated power of each method;

the estimated power curves for each method are shown in
Figure 3. In the interest of space, we do not include the
estimated power curves for the CW method as the power
is significantly lower than with the other methods; see the
Supporting Information for these figures. We start by con-
sidering a difference in the mean. Both the HHG-CB and
MANOVA-CB approaches perform similarly, although the
MANOVA-CB method has moderately higher power. That
this approach performs well in this setting is not surpris-

ing as MANOVA is designed to detect differences in the
mean.We also see from this figure that increasing the sam-
ple size, either by increasing the number of rats or neurons,
resulted in an increase in power. It does appear that adding
additional rats, and therefore adding observations that are
independent from the rest of the data, is of greater ben-
efit than adding additional neurons per rat, which is to
be expected.
The interpretation of the results when considering other

forms of group distributional differences is generally simi-
lar to those discussed above, with the key exception being
that only the proposed approach is shown to detect these
differences. Neither of the other two approaches is sensi-
tive to second-order moment differences between groups.
When considering differences in skewness, all methods
perform poorly, although the proposed approach does
exhibit the highest, albeit still small, power. In preliminary
simulations, we saw substantial improvement by the pro-
posed method to detect differences in skewness when the
data are generated without noise, which is consistent with
results seen in the multivariate framework.

6 ANALYSIS OF AWHPC
EXPERIMENT

We now discuss the analysis of the motivating dataset
described in Section 2, the objective of which is to test for
distributional differences in medium spiny neuron elec-
trophysiological properties between phases of the estrous
cycle. First, we look at the estimated mean function
for each estrous cycle phase, as shown in Figure 4; the
estimated bivariate mean functions and the univariate tra-
jectories conditional on different frequencies and currents
are displayed. To estimate the group specific mean, we
use the sandwich smoother estimate (Xiao et al., 2013)
described in Section 3.2 on the data separately by group.
Generally, we see that for a fixed current, the mean log-
periodogramdecreaseswith increasing frequency. Further,
for a fixed phase of the estrous cycle, the rate of decay
decreases as current increases. The mean log-periodogram
for the three phases is very similar when no current is
injected. Differences between the phases become appar-
ent as the amount of current applied increases. The mean
log-periodogram for the diestrus phase is noticeably larger
than the mean for the other two phases when a low (e.g.,
+0.05 nA) amount of current is applied. This suggests that
an important difference between phases is the amount of
current necessary to generate an action potential. As cur-
rent increases, the mean log-periodogram increases until
it plateaus, the magnitude of which depends on the fre-
quency but not the phase of the estrous cycle. While
neurons in the diestrus phase differ from those in the other
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F IGURE 3 Estimated power curves for the HHG-CB and MANOVA-CB methods for detecting differences in (A) the mean, (B) the
variance of the rat-level effect, (C) the variance of the neuron-level effect, and (D) the skewness when applied to functional data. Estimated
power curves for both methods for detecting differences in the mean under a nonadditive model (E). All estimates based on 1000 replicates.
This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

two phases, neurons in the estrus and proestrus phases of
the cycle appear to behave similarly. We note that for the
majority of the data, the applied current is less than +0.2
nA; this explains why the estimated mean functions are
less smooth for higher current. Also, due to the compara-
tively few observations at currents higher than +0.2 nA, it
is likely that the estimated mean (and other estimates) has
larger standard errors than for lower currents. However,
because we are ultimately focused on hypothesis testing

rather than estimation, and because the observations are
projected onto a common set of estimated eigenfunctions
that do not differ by group, we consider the relative uncer-
tainty caused by few observations for high current to not
have a meaningful impact on the proposed method or the
eventual results.
To estimate the eigenfunctions of the marginal covari-

ance function, we first estimate the mean function using
the sandwich smoother and then use it to obtain the
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LONG et al. 11

F IGURE 4 The estimated mean of the log-periodogram of the membrane potential for each phase in the estrous cycle. (Top) The
estimated bivariate mean function for the diestrus (left), estrus (center), and proestrus (right) phases. (Bottom left) The different phases of the
cycle are indicated by line style. The mean trajectories corresponding to different amounts of current are indicated by color. (Bottom right)
The estimated mean of the log-periodogram for fixed frequency and changing current is shown for each phase in the estrous cycle. The mean
trajectories corresponding to different frequencies are indicated by color. This figure appears in color in the electronic version of this article,
and any mention of color refers to that version.

centered data. We then estimate the eigenfunctions as
described in Section 3.2. To select the truncation param-
eters, 𝑃 and 𝑄𝑝, we use a 0.95 PVE threshold, separately
for each parameter. This choice results in selecting 𝑃 = 2,
𝑄1 = 4, and𝑄2 = 4. The estimates of {𝜙𝑝(⋅)}𝑃=2𝑝=1, the eigen-
functions of themarginal covariance function of frequency
from the initial decomposition are shown in the left-most
panel in Figure 5. The leading eigenfunction indicates a
deviation from the mean that is approximately constant
across frequency. The second eigenfunction indicates a
large positive deviation from the mean at low frequencies
and a small negative deviation from the mean at higher
frequencies. A large positive coefficient of this second
eigenfunction would likely have action potentials occur-
ring with higher frequency than an average observation.
The estimates of {𝜓1𝑞(⋅)}

𝑄1=4
𝑞=1 and {𝜓2𝑞(⋅)}

𝑄2=4
𝑞=1 are shown in

the middle and right-most panel of Figure 5, respectively.
The estimate of the leading eigenfunction of the covariance
of coefficients of the leading eigenfunction from the ini-
tial decomposition, 𝜓1,1(⋅), is shown in black in the middle
panel of Figure 5. This eigenfunction indicates a large neg-

ative deviation from the mean at all frequencies when the
current applied to the neuron is low. When the current is
high, this eigenfunction indicates little deviation from the
mean across all frequencies.
We use the HHG test with the proposed bootstrap-based

procedure to test for differences in the log-periodogram
across phases of the estrous cycle, while accounting for the
hierarchical structure of the observed data. As in the sim-
ulations, we use 1000 bootstrap samples to estimate the
null distribution of the test statistic. The p-value of the pro-
posed testing method is 0.003, indicating that there is a
significant difference in the log-periodogram across phase.
As a sensitivity analysis, we considered the impact of the
number of components selected using PVE on the results;
across all considered scenarios, the results are robust to
changes in the number of components with the p-value
always ≤ 0.005 (see Supporting Information).
Since we detect a significant difference in the log-

periodogram between phases of the estrous cycle, we can
use the estimated coefficients of the eigenfunctions to
explore how the groups differ. We do this by testing each
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12 LONG et al.

F IGURE 5 (Left) The estimated eigenfunctions in frequency from the initial decomposition of the data; 𝜙1(⋅) in black, 𝜙2(⋅) in red.
(Middle) The estimated eigenfunctions 𝜓1𝑞(⋅), for 𝑞 = 1 (black), 2 (red), 3 (green), and 4 (blue). (Right) The estimated eigenfunctions 𝜓2𝑞(⋅),
identified similar to 𝜓1𝑞(⋅). This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

coefficient one at a time. Rather than resampling the func-
tional data to account for the hierarchical structure, we
instead resample the coefficients themselves to approxi-
mate the null distribution of the test statistic. From this
analysis, we see that the differences in the log-periodogram
across phase of the estrous cycle are explained by different
coefficients for the leading eigenfunctions. For example,
we see that the coefficient 𝜁1,1 differs significantly across
phase. By examining the distribution of coefficient esti-
mates by estrous cycle phase, we see that observations
from the diestrus phase tend to have large negative val-
ues for this coefficient. This indicates that neurons in the
diestrus phase exhibit above-average log-periodogram val-
ues across all frequencies when the current applied is low;
this is similar to what was seen from the plots of the mean
functions in Figure 4.
Our analysis provides new insights into the under-

standing of the neurophysiological properties originally
described in Proaño et al. (2018). From our new analysis
of this dataset, we found that neurons from rats in the
diestrus phase required less current to generate an action
potential than those in either of the other two phases of the
estrous cycle. This was one of the properties of interest in
the original analysis of this dataset; our findings are con-
sistent with those described in Proaño et al. (2018). Despite
the similar results between the two analyses, with our
novelmethod, we did not have to prespecify this parameter
of interest and process the data accordingly.

7 DISCUSSION

In this paper, we propose a testing procedure to detect
group distributional differences in hierarchically clustered
functional data. We applied this method to the motivating

dataset to show that the electrophysiological properties of
certain neurons in adult female rats differ across phases
of the estrous cycle. While the focus of this paper was
on this specific application, the proposed method can be
applied in other settings in which hierarchically clustered
functional data are observed. To that point, we evalu-
ated the performance of the proposed method in various
simulations and illustrated the advantages against alter-
native methods. A limitation of the proposed method
is that the resampling method to approximate the null
distribution of the test statistic can be computationally
intensive, particularly with larger datasets. However, this
step can easily be done in parallel to shorten the necessary
runtime.
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