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Proaño SB, Krentzel AA, Meitzen J. Differential and synergistic
roles of 17�-estradiol and progesterone in modulating adult female rat
nucleus accumbens core medium spiny neuron electrophysiology. J
Neurophysiol 123: 2390–2405, 2020. First published May 13, 2020;
doi:10.1152/jn.00157.2020.—Naturally occurring cyclical changes in
sex steroid hormones such as 17�-estradiol and progesterone can
modulate neuron function and behavior in female mammals. One
example is the estrous cycle in rats, which is composed of multiple
phases. We previously reported evidence of differences between
estrous cycle phases in excitatory synapse and intrinsic electrophys-
iological properties of rat nucleus accumbens core (AcbC) medium
spiny neurons (MSNs). The AcbC is a nexus between the limbic and
premotor systems and is integral for controlling motivated and re-
ward-associated behaviors and disorders, which are sensitive to the
estrous cycle and hormones. The present study expands our prior
findings by testing whether circulating levels of estradiol and proges-
terone correlate with changes in MSN electrophysiology across es-
trous cycle phases. As part of this project, the excitatory synapse and
intrinsic excitability properties of MSNs in late proestrus of adult
female rats were assessed. Circulating levels of estradiol correlate
with resting membrane potential, the time constant of the membrane,
and rheobase. Circulating levels of progesterone correlate with min-
iature excitatory postsynaptic current (mEPSC) frequency and ampli-
tude. Circulating levels of estradiol and progesterone together corre-
late with mEPSC amplitude, resting membrane potential, and input
resistance. The late proestrus phase features a prominent and unique
decrease in mEPSC frequency. These data indicate that circulating
levels of estradiol and progesterone alone or in combination interact
with specific MSN electrophysiological properties, indicating differ-
ential and synergistic roles of these hormones. Broadly, these findings
illustrate the underlying endocrine actions regarding how the estrous
cycle modulates MSN electrophysiology.

NEW & NOTEWORTHY This research indicates that estradiol and
progesterone act both differentially and synergistically to modulate
neuron physiology in the nucleus accumbens core. These actions by
specific hormones provide key data indicating the endocrine mecha-
nisms underlying how the estrous cycle modulates neuron physiology
in this region. Overall, these data reinforce that hormones are an
important influence on neural physiology.

electrophysiology; estradiol; nucleus accumbens; progesterone; sex
differences

INTRODUCTION

The menstrual cycle in humans and its analogous cycle in
rodents, the estrous cycle, influence neuron physiology across
multiple brain regions (Adams et al. 2018; Blume et al. 2017;
Olmos et al. 1989; Proaño et al. 2018; Terasawa and Timiras
1968; Willett et al. 2019; Woolley and McEwen 1993). Both
cycles feature cyclical changes in the circulating levels of
ovarian hormones such as 17�-estradiol (estradiol) and pro-
gesterone and are divided into distinct phases. These phases are
characterized by differing concentrations of estradiol and pro-
gesterone as well as by accompanying changes in reproductive
organ physiology and associated reproductive behaviors
(Beach 1976; Blaustein 2008; Erskine 1989; Hubscher et al.
2005; Kow and Pfaff 1973; Micevych et al. 2017; Westwood
2008). The rat estrous cycle typically occurs over a 4- to 5-day
time period and is divided into distinct phases, including
diestrus, proestrus, and estrus. Diestrus features relatively low
levels of estradiol and progesterone that then gradually begin to
rise. Proestrus is when these hormones reach peak circulating
levels in a temporally distinct fashion. The morning of proes-
trus features a surge in circulating levels of estradiol, followed
in the afternoon by a surge in circulating levels of progester-
one. This differential hormone action, coupled with other
physiological processes, allows the proestrus phase to be fur-
ther subdivided into early and late proestrus phases (also
designated proestrus AM and proestrus PM phases) (Adams et
al. 2018). The third phase is estrus, when the effects of
estradiol and progesterone linger, even though the circulating
concentrations are low. Recently, we showed that the excit-
atory synaptic input and intrinsic excitability properties of
nucleus accumbens core (AcbC) medium spiny neurons
(MSNs) robustly change across the estrous cycle (diestrus,
early proestrus, and estrus) (Proaño et al. 2018). These findings
provided the first line of evidence in support of the documentedCorrespondence: J. Meitzen (jemeitze@ncsu.edu).
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changes in AcbC-mediated behaviors that differentially man-
ifest across the estrous cycle in rodents and the menstrual
cycle in humans. These behaviors include those related to
motivation, reward and reinforcement, and pathologies such
as anxiety, depression, and addiction, which are all regu-
lated by the AcbC (Becker and Hu 2008; Becker et al. 2001;
Evans and Foltin 2006; Lebron-Milad and Milad 2012;
Milad et al. 2009).

The AcbC is a highly conserved brain region that serves
as a nexus between the limbic and premotor systems that
manages the cognitive processing of motivation, reward,
and reinforcement (Floresco 2015; Francis and Lobo 2017).
It receives glutamatergic inputs from prefrontal cortex,
amygdala, and hippocampus and dopaminergic inputs from
the ventral tegmental area (Deroche et al. 2020; Salgado and
Kaplitt 2015), among others. These inputs converge and are
then integrated by GABAergic MSNs, the primary output
neuron subtype in the AcbC, and, by extension, are part of
the reward circuitry of the brain (Salgado and Kaplitt 2015).
Recent findings have shown that AcbC MSNs in adulthood
express membrane-associated estrogen receptors �, �, and
GPER-1 (Almey et al. 2012, 2015, 2016). AcbC dopami-
nergic and glutamatergic action, such as synapse number,
receptor number, and neurotransmitter availability, exhibit
sensitivity to estradiol (Becker 1999; Becker et al. 2012;
Calipari et al. 2017; Forlano and Woolley 2010; Meisel and
Mullins 2006; Mermelstein et al. 1996; Wissman et al.
2012). Furthermore, the AcbC is sensitive to developmental
and acute estradiol action (Cao et al. 2016, 2018; Krentzel et
al. 2019, 2020; Perry et al. 2013; Tonn Eisinger et al. 2018).
In addition to the effects of estradiol, progesterone and its
derivatives have been documented to modulate GABAA

receptors by acting as chloride channels, albeit not yet in the
AcbC (Backström et al. 2011, 2014). There is select evi-
dence for progesterone receptor expression in the AcbC
(Dluzen and Ramirez 1989b; Ke and Ramirez 1990; Pie-
chota et al. 2017; Sterling et al. 1987).

The individual contributions of circulating levels of estradiol
and progesterone in the modulation of excitatory synaptic input
and intrinsic excitability properties across the estrous cycle in
the AcbC is unknown. This is a critical knowledge gap given
that the estrous cycle is a natural variable that not only induces
robust neural and behavioral changes but is an integral part of
adult female physiology of reproductive age. Here we address
this question by testing the hypothesis that circulating levels of
17-� estradiol and progesterone, alone or in combination,
correlate with changes in MSN electrophysiological properties
across the estrous cycle. To accomplish this, we first aug-
mented our existing data set of female rat MSNs in diestrus,
early proestrus and estrus (Proaño et al. 2018) by conducting
additional whole cell patch-clamp recordings of AcbC MSNs
from late proestrus, which has never before been performed by
any laboratory group. We then employed a hormone extraction
technique to measure 17-� estradiol and progesterone levels
from blood serum samples obtained at euthanasia from rats in
all phases of the estrous cycle. Using this expanded data set, we
then tested whether circulating levels of 17-� estradiol and
progesterone correlated with MSN electrophysiological prop-
erties.

METHODS

Animals

All animal protocols were approved by the Institutional Animal
Care and Use Committees at North Carolina State University. Post-
natal day 60 (P60) female Sprague-Dawley CD IGS rats were pur-
chased from Charles River Laboratories. Rats were housed in pairs
until postnatal day 65. After postnatal day 65, animals were individ-
ually housed to facilitate assessment of late proestrus (n � 12).
Animals in other phases were generated in a recent and directly
preceding study that employed the same methods as employed in the
current study (Proaño et al. 2018). New to this study are animals in
late proestrus. For the purposes of this study, late proestrus is defined
as the time near the end of the ~12-h proestrus phase, when vaginal
cytology exhibits predominantly round and nucleated cells, with
initial but minimal appearance of clumped cornified epithelial cells
that is characteristic of the estrus phase. In nocturnal animals such as
rats, late proestrus typically occurs in the late afternoon of the
proestrus phase (Becker et al. 2002). For the purpose of this study,
early proestrus is defined as near the beginning of the ~12-h proestrus
phase, when vaginal cytology exhibits only round and nucleated
epithelial cells. In nocturnal animals such as rats, early proestrus
typically occurs in the morning of the proestrus phase (Becker et al.
2002). Age at recording ranged from P70 to P85. All animals were
housed in a temperature- and light-controlled room (23°C, 40%
humidity, 12:12-h light-dark cycle) at the Biological Resource Facility
of North Carolina State University. All cages were polysulfone
bisphenol A (BPA) free and were filled with bedding manufactured
from virgin hardwood chips (Beta Chip; NEPCO, Warrensburg, NY)
to avoid the presence of endocrine disruptors in corncob bedding
(Mani et al. 2005; Markaverich et al. 2002; Villalon Landeros et al.
2012). Soy protein-free rodent chow (2020X; Teklad, Madison, WI)
and glass bottle-provided water were available ad libitum.

Animals were divided into two groups to capture late proestrus and
to control for a possible circadian cycle effect. One group of animals
(n � 6) was exposed to a reverse light cycle with lights on at 7:00 PM
and off at 7:00 AM, and the other group (n � 6) was exposed to a
regular light cycle with lights turning on and off at 7:00 AM and 7:00
PM, respectively, as in our previous studies on the effects of the
estrous cycle on rat AcbC and caudate-putamen (Proaño et al. 2018,
2019). Estrous cycle assessment was performed beginning on P65
with a wet mount preparation as previously described (Hubscher et al.
2005; Proaño et al. 2018). Females were vaginally swabbed 30 min
before lights out, at ~6:30 AM or ~6:30 PM, respectively. Slides were
visualized under a microscope to determine estrous cycle stage. No
statistically significant differences were detected between animals on
a regular light cycle and those on a reverse light cycle. Thus all data
from late proestrus are grouped for the remainder of the article.
Electrophysiological data from animals in early proestrus were col-
lected from animals experiencing a regular light cycle and were
previously published as described above.

Hormone Extractions and Assays

At euthanasia, trunk blood was collected and centrifuged (within 30
min) at 4,000 revolutions/min for 35 min to obtain serum from 33
animals (diestrus: n � 10; early proestrus: n � 7; late proestrus: n �
12; estrus: n � 4). Serum was not available from 5 animals (diestrus:
n � 1; early proestrus: n � 1; estrus: n � 3). Thus electrophysiology
data obtained from these animals was excluded from correlations
analysis. Serum was stored at �80°C until extraction. All serum was
assayed at the same time. Hormone extraction and enzyme-linked
immunosorbent assay protocols were modified from previously de-
scribed protocols (Chao et al. 2011; Hedges et al. 2018; Krentzel et al.
2020; Tuscher et al. 2016). Briefly, 250 �L of serum were extracted
twice with a 10:1 ratio of diethyl ether followed by snap freeze with
liquid nitrogen. The ether-containing organic compounds were poured
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off into clean glass tubes and dried overnight. This process was
conducted twice. Once dry, the samples were resuspended in 200 �L
of buffer from the enzyme-linked immunosorbent assay kit (Calbio-
chem estradiol and Cayman progesterone ELISA kits). Samples were
measured in duplicates including extraction efficiency controls. Es-
tradiol and progesterone were measured from the same samples. A
1:100 dilution of the sample was used for the progesterone assay, and
the remaining volume of the sample was used for the estradiol assay.
Dilution factors were selected based on a dilution curve conducted
before the experimental assay. Extraction efficiency for estradiol was
125% with blank at (2.840 � 0.271 pg/mL, mean � SE), and intra-
assay variability was 14.45%; progesterone measurements were from
same extracted samples as estradiol, and therefore they share the same
extraction efficiency. Progesterone blank was at (85.365 � 28.568
pg/mL), and intra-assay variability was 3.3%. All samples were above
detectability for the assay. We note that although both employed
ELISA kits are advertised by the manufacturers as being able to detect
hormone levels in unextracted serum, our experience is that detection
levels are substantially decreased when unextracted serum is used.
Progesterone levels significantly differed between estrous cycle
phases (Table 1). Estradiol levels did not significantly differ (Table 1).

Acute Brain Slice Preparation

Brain slices containing the nucleus accumbens core were prepared
as previously described (Proaño et al. 2018). Animals were deeply
anesthetized with isoflurane gas before decapitation (~7:00 AM or
~7:00 PM for the reverse and regular light cycles, respectively; for the
late proestrus phase that is new to this study). The brain was rapidly
extracted into ice-cold oxygenated sucrose artificial cerebrospinal
fluid (ACSF) containing (in mM) 75 sucrose, 1.25 NaH2PO4, 3
MgCl2, 0.5 CaCl2, 2.4 Na pyruvate, and 1.3 ascorbic acid from
Sigma-Aldrich (St. Louis, MO) and 75 NaCl, 25 NaHCO3, 15 dex-
trose, and 2 KCl from Fisher (Pittsburgh, PA). The osmolarity of the
sucrose ACSF was 295–305 mosM, and the pH was between 7.2 and
7.4. Coronal brain slices (300 �m) were prepared with a vibratome
and then incubated in regular ACSF containing (in mM) 126 NaCl, 26
NaHCO3, 10 dextrose, 3 KCl, 1.25 NaH2PO4, 1 MgCl2, and 2 CaCl2
(295–305 mosM, pH 7.2–7.4) for 30 min at 30–35°C and then for at
least 30 min at room temperature (22–23°C). Slices were stored
submerged in room-temperature oxygenated ACSF for up to 6 h after
sectioning in a large-volume bath holder.

Electrophysiological Recordings

Slices rested for at least 1 h after sectioning. They were then placed
in a Zeiss Axioscope equipped with infrared-differential interference
contrast (IR-DIC) optics, a Dage IR-1000 video camera, and �10 and
�40 lenses with optical zoom and superfused with oxygenated ACSF
heated to ~21.63°C. Whole cell patch-clamp recordings were used to
record the electrical properties of MSNs in the nucleus accumbens
core (Fig. 1). MSN density and nucleus accumbens core volume do
not differ by sex (Meitzen et al. 2011; Wong et al. 2016). Glass
electrodes contained (in mM) 115 K D-gluconate, 8 NaCl, 2 EGTA, 2
MgCl2, 2 MgATP, 0.3 NaGTP, and 10 phosphocreatine from Sigma-
Aldrich and 10 HEPES from Fisher (285 mosM, pH 7.2–7.4). Signals
were amplified, filtered (2 kHz), and digitized (10 kHz) with a

MultiClamp 700B amplifier attached to a Digidata 1550 system and a
personal computer using pCLAMP 10.7 software. Membrane poten-
tials were corrected for a calculated liquid junction potential of 13.5
mV. As previously described (Dorris et al. 2015), recordings were first
made in current clamp to assess neuronal electrophysiological prop-
erties. MSNs were identified by medium-sized somas, the presence of
a slow-ramping subthreshold depolarization in response to low-mag-
nitude positive current injections, a hyperpolarized resting potential
more negative than �65 mV, inward rectification, and prominent
spike afterhyperpolarization (Belleau and Warren 2000; O’Donnell
and Grace 1993). In a subset of recordings, oxygenated ACSF con-
taining both the GABAA receptor antagonist picrotoxin (PTX, 150
�M; Fisher) and the voltage-gated sodium channel blocker tetrodo-
toxin (TTX, 1 �M; Abcam Biochemicals) was applied to the bath to
abolish inhibitory postsynaptic current events and action potentials,
respectively. Once depolarizing current injection no longer gener-
ated an action potential, MSNs were voltage clamped at �70 mV
and miniature excitatory postsynaptic currents (mEPSCs) were
recorded for at least 5 min. These settings enable recordings from
almost exclusively AMPA glutamate receptors (Nowak et al. 1984)
and were confirmed by our laboratory in a previous study (Proaño
et al. 2018), but not in the current study. In all experiments,
input/series resistance was monitored for changes, and cells were
excluded if resistance changed 25%.

Data Recording and Analysis

Intrinsic electrophysiological properties and action potential char-
acteristics were analyzed with pCLAMP 10.7. After break-in, the
resting membrane potential was first allowed to stabilize ~1–2 min, as
previously described (Mu et al. 2010). After stabilization, resting
membrane potential was assessed in the absence of injected current.
At least three series of depolarizing and hyperpolarizing current
injections were applied to elicit basic neurophysiological properties.
Most properties measured followed definitions previously adopted by
our laboratory (Cao et al. 2016; Dorris et al. 2015; Proaño et al. 2018;
Willett et al. 2016, 2019), which were based on those of Perkel and
colleagues (Farries et al. 2005; Farries and Perkel 2000, 2002; Meit-
zen et al. 2009). For each neuron, measurements were made of at least

Table 1. Circulating levels of estradiol and progesterone across the estrous cycle

Hormone Diestrus Early Proestrus Late Proestrus Estrus Statistics (F, P)

17�-Estradiol, pg/mL 8.2 � 1.3 (10) 11.4 � 1.7 (7) 11.7 � 1.6 (12) 8.2 � 2.3 (4) 1.409, 0.269
Progesterone, ng/mL 34.8 � 4.8 (10)a 28.6 � 7.3 (7)a 51.3 � 6.1 (12)b 43.4 � 6.0 (4)a,b 3.173, 0.043

Values are means � SE for numbers of animals in parentheses. Boldface indicates statistical significance. a,bSuperscript letters indicate statistically significant
differences across groups. Data were analyzed using a one-way Brown–Forsythe ANOVA.
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Fig. 1. Location of late proestrus whole cell patch-clamped medium spiny
neurons (MSNs) in rat nucleus accumbens core (AcbC). Acb, nucleus accum-
bens; AC, anterior commissure; LV, lateral ventricle.
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three action potentials generated from minimal current injections.
These measurements were then averaged to generate the reported
action potential measurement for that neuron. For action potential
measurements, only the first generated action potential was used
unless more action potentials were required to meet the standard three
action potentials per neuron. Action potential threshold was defined as
the first point of sustained positive acceleration of voltage (�2V/�t2)
that was also 3 times the SD of membrane noise before the detected
threshold (Baufreton et al. 2005). The delay to first action potential is
the average time in milliseconds of the time from the initial deflection
generated by the current step function to the action potential threshold
of the first spike. Action potential width at half peak is the width of the
action potential halfway between action potential peak and threshold
in milliseconds. The action potential amplitude is the change in
millivolts between action potential threshold and peak. Afterhyperpo-
larization peak amplitude is the difference in millivolts between action
potential threshold and the most hyperpolarized voltage point after
action potential peak. Afterhyperpolarization time to peak amplitude
is the time measured in milliseconds between the action potential
threshold voltage point on the descending phase of the action potential
and the afterhyperpolarization peak amplitude. Rheobase, measured in
nanoamps, is the lowest amplitude of injected positive current needed
to produce an initial action potential. The slope of the linear range of
the evoked action potential firing rate-to-positive injected current
curve (FI slope) was calculated from the first current stimulus that
evoked an action potential to the first current stimulus that generated
an evoked firing rate that persisted for at least two consecutive current
stimuli. Input resistance in the linear, nonrectified range was calcu-
lated from the steady-state membrane potential in response to 0.02-nA
hyperpolarizing pulses. Rectified range input resistance, inward rec-
tification, and percent inward rectification were calculated as de-
scribed previously, with rectified range input resistance measured
using the most hyperpolarizing current injected into the MSN (Belleau
and Warren 2000). Inward rectification is the input resistance of the
0.02-nA step minus the rectified range input resistance. Percent
inward rectification is defined as rectified range input resistance/input
resistance � 100. The time constant of the membrane was calculated
by fitting a single exponential curve to the membrane potential change
in response to 0.02-nA hyperpolarizing pulses. Possible differences in
hyperpolarization-induced “sag” were assessed with the “sag index”
(Farries et al. 2005). Briefly, the sag index is defined as the difference
between the minimum voltage measured during the largest hyperpo-
larizing current pulse and the steady-state voltage deflection of that
pulse, divided by the steady-state voltage deflection. A cell with no
sag would exhibit a sag index of 0, whereas a cell whose maximum
voltage deflection is twice that of the steady-state deflection would
exhibit a sag index of 1. Cells with considerable sag typically have an
index of 0.1. Frequency, amplitude, and decay of mEPSCs were analyzed
off-line with Mini Analysis (Synaptosoft, http://www.synaptosoft.com/
MiniAnalysis/). mEPSC threshold was set at a minimum value of 5
pA, and accurate event detection was validated by visual inspection.
mEPSC frequency was defined as the number of detected mEPSC
events per second (Hz). mEPSC amplitude was calculated as the
difference between the averaged baseline 10 ms before initial mEPSC
rise and peak mEPSC amplitude. mEPSC decay was calculated as the
time required for peak mEPSC amplitude to return to baseline.

Statistics

Electrophysiological data were analyzed with a one-way ANOVA
with Newman–Keuls post hoc tests, linear regression (Pearson’s), and
multiple linear regression (GraphPad Prism 8). Hormone concentra-
tions were analyzed using a one-way Brown–Forsythe ANOVA with
one-tailed t tests with Welch’s correction post hoc tests to control for
populations with unequal variances that exhibit skew (GraphPad
Prism 8), as previously documented (Krentzel et al. 2020). P values

�0.05 were considered a priori as significant. Data are presented as
means � SE.

RESULTS

Here we test the central hypothesis that the electrophysio-
logical properties of female rat AcbC MSNs correlate with
circulating estradiol, progesterone, or both hormones. Our
previously published study on estrous cycle effects on AcbC
MSN electrophysiology was originally designed to solely cap-
ture early proestrus (Proaño et al. 2018). However, to under-
stand the individual contribution of estradiol and progesterone
in modulating MSN electrophysiology, it was necessary to
record and characterize electrophysiological properties of
MSNs in late proestrus, as well. Thus the results are presented
in two parts. Part I:Late Proestrus presents a novel character-
ization of late proestrus AcbC MSN excitatory synapse and
intrinsic excitability properties. These data are then combined
with the previous data set mentioned above to comprehensively
analyze how MSN electrophysiological properties are modu-
lated across the entire estrous cycle (Table 2). With the use of
these data, Part II: Circulating Estradiol and Progesterone
Levels, and MSN Electrophysiology then tests the hypotheses
that circulating levels of estradiol, progesterone, and both
estradiol and progesterone correlate with specific MSN elec-
trophysiological properties.

Part I: Late Proestrus

mEPSC frequency is drastically decreased in late proestrus.
To assess mEPSC properties we voltage clamped MSNs to
�70 mV and applied 1 �M TTX and 150 �M PTX solution to
block sodium-dependent action potentials and GABAA recep-
tors, respectively (Fig. 2A). We assessed mEPSC frequency,
amplitude, and decay (Table 2). mEPSC frequency (Fig. 2B)
levels were remarkably low, ranging from ~0 to 1 Hz. mEPSC
amplitude (Fig. 2C) values ranged from around 10 to 22 pA,
while mEPSC decay (Fig. 2D) levels averaged ~5 ms. When
compared with a previous description from other stages of the
estrous cycle (Proaño et al. 2018), these findings demonstrate
that excitatory synapse properties in late proestrus MSNs show
a drastic reduction in mEPSC frequency with a relatively
robust increase in amplitude for the existing mEPSC events.

Membrane excitability and passive membrane properties in
late proestrus. We also assessed intrinsic electrophysiological
properties in late proestrus MSNs, including individual action
potential properties, excitability, and passive membrane prop-
erties. To accomplish this, we injected MSNs with a series of
depolarizing and hyperpolarizing current injections, after
which we analyzed an array of electrophysiological attributes.
All electrophysiological attributes and related statistical infor-
mation are provided in Table 2. Here we highlight excitability
and passive membrane properties. Membrane excitability was
assessed by injecting a series of depolarizing current injections
into individual MSNs to quantify action potential initiation and
propagation (Fig. 3A). We first plotted the number of action
potentials evoked by depolarizing current injection curve (FI
curve) for individual MSNs (Fig. 3B). Using these data, we
quantified individual MSN excitability by calculating the slope
of the evoked firing rate to positive current curve (FI slope;
Fig. 3C). We also assessed rheobase, which is the minimum
amount of current required to initiate an action potential (Fig.
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3D). Regarding passive membrane properties, a series of hy-
perpolarizing current injections were administered to MSNSs
(Fig. 4A). A plot of the steady-state voltage deflection evoked
by injected hyperpolarizing current curve (IV curve; Fig. 4B)
reveals inward rectification, as expected from previous studies
of MSNs (Belleau and Warren 2000). We then quantified input
resistance in the linear (Fig. 4C) and rectified ranges (Fig. 4D).
These findings indicate that the excitability and passive mem-
brane properties of late proestrus MSNs fall within an expected
range from previous studies except for mEPSC frequency. As
a whole, these data enable a more complete analysis of AcbC
MSN properties across the estrous cycle (Table 2).

Part II: Circulating Estradiol and Progesterone Levels, and
MSN Electrophysiology

The rat estrous cycle features cyclical fluctuations of estra-
diol and progesterone over a 4- to 5-day period. It can be
divided into multiple phases, including the diestrus, early and
late proestrus, and estrus phases. Our previous study demon-
strated robust changes in adult female AcbC MSN electrophys-
iological properties across the estrous cycle, which were abol-
ished upon gonadectomy (Proaño et al. 2018). Our previous
study did not analyze whether the electrophysiological prop-
erties of MSNs varied with circulating levels of estradiol or
progesterone. This is notable gap in knowledge, as answering
this question may provide clues toward the underlying endo-
crine mechanisms. Thus here we tested the hypothesis that
circulating levels of estradiol, progesterone, and both estradiol
and progesterone correlate with specific MSN electrophysio-
logical properties.

Circulating estradiol levels correlate with resting membrane
potential, the time constant of the membrane, and rheobase. To
test the hypothesis that circulating levels of estradiol correlate
with specific MSN electrophysiological properties, we tested
whether each animal’s circulating estradiol levels correlated
with all the MSN properties collected across all phases of the

estrous cycle. Three electrophysiological properties signifi-
cantly correlate with circulating estradiol levels: resting mem-
brane potential, the time constant of the membrane, and rheo-
base. Complete statistical information is provided in Tables 2
and 3. Resting membrane potential exhibited an inverse corre-
lation with increasing circulating levels of estradiol across the
estrous cycle (Fig. 5A), suggesting that as estradiol levels
increase, resting membrane potential decreases. If this relation-
ship is robust, then the estrous cycle phases that feature higher
circulating estradiol levels would exhibit hyperpolarized rest-
ing membrane potentials. Supporting this, resting membrane
potential was significantly hyperpolarized in both early and late
proestrus compared with the diestrus phase (Fig. 5B). Interest-
ingly, resting membrane potential remained hyperpolarized in
the estrous phase compared with the diestrus phase, even
though circulating levels of estradiol are decreasing in this
phase. This may indicate that MSNs have yet to revert to a
non-estradiol-influenced state, as well as a potential role for a
synergistic interaction between estradiol and progesterone,
which is addressed below. The time constant of the membrane
exhibited an inverse correlation with increasing levels of cir-
culating estradiol (Fig. 5C), suggesting that as estradiol levels
increase, the time constant of the membrane decreases. To
support this, the time constant of the membrane decreased
during late proestrus phase compared with the diestrus phase
(Fig. 5D). Rheobase featured a positive correlation with in-
creasing circulating estradiol levels (Fig. 5E). This finding
indicates that the minimum amount of current required to
initiate the first action potential increases as circulating levels
of estradiol increase. If this correlation is robust, then we
would expect that the estrous cycle phases that feature higher
circulating estradiol levels would exhibit increased rheobase
values. Consistent with this logic, rheobase was significantly
elevated in early and late proestrus compared with the diestrus
phase (Fig. 5F). Rheobase was also significantly increased in
the estrus phase compared with the diestrus phase, again

Table 2. Nucleus accumbens core medium spiny neuron electrophysiological properties

Property Diestrus Early Proestrus Late Proestrus Estrus Statistics (F, P)

mEPSC frequency, Hz 1.0 � 0.2 (19)a 2.1 � 0.4 (12)b 0.4 � 0.1 (25)c 2.3 � 0.4 (14)b 12.75, <0.0001
mEPSC amplitude, pA 10.4 � 0.7 (19)a 11.40 � 0.9 (12)a 15.8 � 0.5 (25)b 9.1 � 0.3 (14)a 28.36, <0.0001
mEPSC decay, ms 4.2 � 0.5 (19)a 4.8 � 0.5 (12)a 3.7 � 0.2 (25)a 2.7 � 0.3 (14)b 4.35, 0.0074
Resting membrane potential, mV �83.8 � 1.1 (26)b �87.4 � 0.9 (20)a �88.2 � 0.4 (49)a �88.1 � 1.5 (16)a 6.40, 0.0005
Input resistance, M� 299.1 � 18.7 (26)a 203.9 � 16.0 (20)b,c 209.4 � 8.4 (49)b,c 258.6 � 29.4 (16)a,b 8.53, <0.0001
Rectified range input resistance, M� 217.5 � 12.7 (26)a 164.8 � 12.6 (20)b,c 169.5 � 6.4 (49)b,c 189.5 � 17.9 (16)a,b 4.95, 0.003
Inward rectification, M� 81.7 � 14.1 (26)a 39.0 � 5.9 (20)b,c 39.9 � 3.8 (49)b,d 69.1 � 19.0 (16)a,b 5.13, 0.002
Percent inward rectification, % 74.9 � 3.0 (26) 81.4 � 2.0 (20) 81.6 � 1.2 (49) 77.9 � 4.1 (16) 2.03, 0.115
Sag index (unitless) 0.004 � 0.004 (26) 0.003 � 0.001 (20) 0.010 � 0.002 (49) 0.005 � 0.004 (16) 1.51, 0.216
Time constant of the membrane, ms 19.1 � 1.4 (26)a 14.8 � 1.2 (20)a,b 13.8 � 0.7 (49)b,c 16.4 � 2.4 (16)a,b,c 4.05, 0.009
Capacitance, pF 68.1 � 6.1 (26) 78.1 � 7.4 (20) 68.8 � 3.4 (49) 65.4 � 6.4 (16) 0.78, 0.505
Rheobase, pA 0.1 � 0.01 (26)a 0.1 � 0.01 (19)b 0.1 � 0.01 (49)b 0.1 � 0.01 (16)b 6.58, 0.0004
Delay to first AP, ms 402.3 � 15.6 (18)a 438.9 � 13.2 (18)a,c 441.4 � 9.3 (48)a,c 465.9 � 14.6 (15)b,c 3.03, 0.033
AP threshold, mV �51.8 � 1.9 (26) �47.4 � 2.0 (19) �47.4 � 1.0 (49) �50.5 � 2.0 (16) 2.06, 0.110
AP amplitude, mV 54.8 � 3.0 (26) 54.6 � 3.5 (19) 48.3 � 1.6 (49) 55.0 � 3.5 (16) 2.18, 0.095
AP width at half-peak amplitude, ms 3.8 � 0.2 (26)a 3.4 � 0.1 (17)a 4.0 � 0.1 (49)b 3.6 � 0.2 (16)a,b 3.80, 0.013
AHP peak amplitude, mV �7.2 � 0.5 (25) �7.7 � 0.6 (19) �9.0 � 0.4 (49) �7.1 � 0.5 (16) 3.97, 0.010
AHP time to peak, ms 25.8 � 3.1 (25) 23.2 � 2.1 (19) 25.7 � 1.5 (49) 26.3 � 3.3 (16) 0.26, 0.854
FI slope, Hz/nA 298.7 � 17.9 (26)a 241.3 � 14.8 (19)b 238.5 � 7.1 (49)b 297.1 � 21.2 (16)a 6.22, 0.001

Excitatory synaptic input and intrinsic excitability properties recorded from diestrus, early and late proestrus, and estrus medium spiny neurons in gonad-intact
adult rat nucleus accumbens core. Values are means � SE for numbers of animals in parentheses. Boldface indicates statistical significance. a,b,c,dSuperscript
letters indicate statistically significant differences across groups. Data were analyzed with a one-way ANOVA with Newman–Keuls post hoc tests. AHP,
afterhyperpolarization; AP, action potential; FI, evoked firing rate-to-positive current curve.
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suggesting a possible remaining impact of estradiol. Overall,
these findings indicate that circulating levels of estradiol asso-
ciate with resting membrane potential and rheobase. The asso-
ciation between estradiol, resting membrane potential, and
rheobase is logical given that a more hyperpolarized resting
membrane potential would require increasing rheobase values
to drive the neuron toward threshold and fire an action poten-
tial. Thus increasing circulating estradiol levels decrease the
overall intrinsic excitability of AcbC MSNs.

Circulating progesterone levels correlate with mEPSC fre-
quency and mEPSC amplitude. To test the hypothesis that
circulating levels of progesterone correlate with specific MSN
electrophysiological properties, we tested whether each ani-
mal’s circulating progesterone levels correlated with all the
MSN properties collected across all phases of the estrous cycle.
Two electrophysiological properties significantly correlated
with circulating progesterone levels: mEPSC frequency and
mEPSC amplitude. Complete statistical information is pro-
vided in Tables 2 and 3. mEPSC frequency exhibited an
inverse correlation with increasing circulating levels of pro-
gesterone (Fig. 6A). This finding indicates that mEPSC fre-
quency decreases as progesterone levels increase. If this cor-
relation is robust, then we would expect that the estrous cycle
phases that feature higher circulating levels of progesterone
would exhibit a decrease in mEPSC frequency. Consistent with

this rationale, mEPSC frequency was significantly decreased in
late proestrus compared with early proestrus and estrus phases
(Fig. 6B). Interestingly, mEPSC frequency rebounded during
the estrus phase, suggesting a possible acute effect of proges-
terone or estradiol. mEPSC amplitude featured a positive
correlation with increasing circulating levels of progesterone
(Fig. 6C), indicating that mEPSC amplitude increases as pro-
gesterone levels increase. If this is a robust correlation, then we
would expect that estrous cycle phases that feature higher
circulating progesterone levels would exhibit increased
mEPSC amplitude. Consistent with this, mEPSC amplitude
was significantly increased in late proestrus compared with the
diestrus, early proestrus, and estrus phases of the cycle (Fig.
6D). Interestingly, the variance of mEPSC amplitude values
decreased radically during the estrus phase, suggesting a po-
tential synergistic action between estradiol and progesterone.
Overall, this analysis indicates that increasing circulating lev-
els of progesterone alter MSN excitatory synapse properties.

Circulating estradiol and progesterone levels together cor-
relate with mEPSC amplitude, resting membrane potential,
input resistance, and rectified range input resistance. To test
the hypothesis that circulating levels of estradiol and proges-
terone together correlate with specific MSN electrophysiolog-
ical properties, we tested whether each animal’s circulating
estradiol and progesterone levels correlate with all the MSN
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the mean. Complete statistical information is in Table 2.
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properties collected across all phases of the estrous cycle using
a multiple linear regression with estradiol and progesterone as
two independent variables. Four electrophysiological proper-
ties significantly correlated with circulating estradiol and pro-
gesterone levels: resting membrane potential, input resistance,
rectified range input resistance, and mEPSC amplitude. Com-
plete statistical information is provided in Tables 2 and 3.
Resting membrane potential correlates with the interaction
between circulating levels of estradiol and progesterone. Con-
sistent with this finding, resting membrane potential remained
hyperpolarized in late proestrus and estrus phases compared
with the diestrus phase, when the effects of both estradiol and
progesterone would potentially manifest (Fig. 5B). Input resis-
tance in the linear range correlated with the interaction between
circulating levels of estradiol and progesterone. Supporting this
finding, input resistance was significantly lower in early and
late proestrus compared with the diestrus phase, with interme-
diate values in the estrus phase (Fig. 7A). Input resistance in the
rectified range also correlated with the interaction between
circulating levels of estradiol and progesterone. Accordingly,
rectified range input resistance was significantly decreased in
early and late proestrus compared with the diestrus phase, and
again exhibited intermediate values in the estrus phase (Fig.
7B). mEPSC amplitude also correlated with the interaction
between circulating levels of estradiol and progesterone (Table
3). As expected, mEPSC amplitude began to increase in early
proestrus when circulating levels of estradiol increase and was

significantly increased in late proestrus when circulating levels
of progesterone increase (Fig. 6C).

DISCUSSION

The findings presented here demonstrate differential and
synergistic roles of estradiol and progesterone in the modula-
tion of AcbC MSN electrophysiological properties across the
estrous cycle. Circulating levels of estradiol correlate with
resting membrane potential, the time constant of the mem-
brane, and rheobase, while circulating levels of progesterone
correlate with mEPSC frequency and amplitude. Furthermore,
when analyzed in combination, circulating levels of estradiol
and progesterone correlate with mEPSC amplitude, resting
membrane potential, and input resistance in both the linear and
rectified ranges. These correlations compare with the changes
in MSN properties across estrous cycle phases, including the
late proestrus phase presented in this study, which features a
notable decrease in mEPSC frequency. Collectively, this study
provides the first mechanistic clues of the underlying neuroen-
docrine mechanisms that shape AcbC input-output properties,
which bears relevance to the associated changes in AcbC-
mediated behaviors and functions across the estrous cycle.

Our previously published data on AcbC properties across the
estrous cycle established two competing interpretations for the
changes in MSN excitatory synapse and intrinsic excitability
properties. One interpretation is that these changing properties
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directly facilitate changes in AcbC function with resulting
impacts on behavior. A second interpretation suggests that
changes in excitatory synaptic input and intrinsic excitability
compensate for each other. This type of change would mitigate
differential circuit output, perhaps via a homeostatic plasticity
mechanism (Tien and Kerschensteiner 2018; Turrigiano 2012).
This second interpretation is based on potentially contrasting
changes in excitatory synapse properties and intrinsic excit-
ability between diestrus MSNs when compared with early
proestrus and estrus MSNs. Briefly, MSNs in the diestrus phase
demonstrated decreased mEPSC frequency and increased in-
trinsic excitability compared with early proestrus and estrus
phase MSNs. This data set, however, did not include metrics
from AcbC MSNs in the late proestrus phase. This omission
was notable given that the late proestrus phase of the estrous
cycle demonstrates different hormonal, behavioral, and repro-
ductive functions compared with other phases of the cycle. As
demonstrated by the current study, the potentially contrasted
changes in excitatory synapse properties and intrinsic excit-
ability exhibited between diestrus compared with early proes-
trus and estrus dissipated during late proestrus (Fig. 8).

These findings indicate that these properties are dissociable,
potentially controlled by different hormones, and are likely not
a type of homeostatic plasticity. In short, changes in excitatory
synaptic input can be disengaged from changes in intrinsic
excitability, and vice versa. Another line of evidence arguing
against homeostatic plasticity is the heterogeneity in electro-
physiological changes and their relationship to circulating
levels of either estradiol, progesterone, or the combination of
both, as may occur during the estrus phase. Several electro-

physiological properties during the estrus phase assumed a
more diestrus-like phenotype, and others assumed a more
proestrus-like (both early and late) phenotype, while others
acquired more intermediate values. This suggests that specific
cellular properties revert to a “non-hormone-influenced” state
at different timescales, indicating temporal differentiation as
well as divergent mechanism of hormone action and further
arguing against the presence of homeostatic synaptic plasticity.
Thus we believe that the preponderance of evidence favors the
first interpretation: changing electrophysiological properties
across the estrous cycle directly facilitate changes in AcbC
function.

Intriguingly, circulating levels of estradiol alone correlate
with intrinsic excitability but not excitatory synapse properties.
Circulating levels of estradiol correlated with resting mem-
brane potential, the time constant of the membrane, and rheo-
base, which all determine neuronal excitability. If estradiol is
acting directly on MSNs and not an afferent target, there are
several estrogen receptor types that may be responsible for this
action, as the AcbC and other striatal regions express mem-
brane-associated estrogen receptors (mERs) �, �, and GPER-1
with sparse or no expression of nuclear receptors in adult
animals (Almey et al. 2012, 2015). We do note that a detailed
characterization of estrogen receptor expression across devel-
opment and estrous cycle phase in the AcbC and afferent
regions has not been published. A potential mechanism for
changes in membrane excitability properties is through estra-
diol’s action on mER� and mER�, along with their association
with metabotropic glutamate receptors, to induce L-type cal-
cium currents as well as CREB phosphorylation in the striatum
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(Grove-Strawser et al. 2010; Mermelstein et al. 1996). The lack
of a correlation with estradiol and excitatory synapse properties
is interesting. One speculative explanation for this is that the
primary actions of estradiol on excitatory synapse properties
occur after peak estradiol actions are reached, preventing a
statistical correlation. Consistent with this explanation, previ-
ous studies have found that multiple estradiol injections in
female rats change AcbC-associated behaviors as well as
dopaminergic and glutamatergic synaptic transmission (Becker
and Rudick 1999; Cao et al. 2018; Krentzel et al. 2019, 2020;
Miller et al. 2020). Important for excitatory synapse properties,
an overall decrease in dendritic spine density was reported in
AcbC but not caudate-putamen MSNs (Peterson et al. 2015). In
addition, sex differences in excitatory synapse number and
associated markers in AcbC MSNs have been identified be-
tween proestrus females and males (Forlano and Woolley
2010; Wissman et al. 2012). Inconsistent with this explanation,
in adult female but not male AcbC, bath estradiol administra-
tion rapidly decreased mEPSC frequency (Krentzel et al.
2019). However, one caveat to the study from Krentzel and
colleagues is that it was not designed to detect potential
differences across the estrous cycle. We also note that another
caveat, for both Krentzel et al. 2019 and the current study, is
that MSN subtype was not addressed. It is possible that
estradiol and progesterone differentially modulate MSNs de-
pending on the type of dopamine receptor expressed, through
either direct or indirect actions via afferent excitatory inputs.
Importantly, aromatase may also be present in the striatum
(Horvath et al. 1997; Jakab et al. 1993; Tozzi et al. 2015;
Wagner and Morrell 1996). Thus it remains possible that both
de novo synthesis of estradiol in the striatum and ovarian
estradiol can regulate AcbC electrophysiological properties in
both acute and longer term time frames. We also note that the
nature of the current study, in that it combined new data with
a past (although recently and sequentially generated) data set,

generates the possibility of uncontrolled variables, although the
principle finding that the estrous cycle modulates MSN elec-
trophysiology was recently replicated by another laboratory in
a different experimental context and rat line (Alonso-Caraballo
and Ferrario 2019). We note that uncontrolled variables are
potentially present even in experiments that collect all exper-
imental groups at the same time. Further mitigating the limi-
tations of this particular study are that the exact same methods
and equipment were employed in both studies, as were the
same first and last authors. We also searched for a priori
expected consistencies in the data sets. For instance, most but
not all of the electrophysiological properties between late
proestrus and estrus are the same, as would be expected if the
data sets were comparable (for example, Fig. 5B). Overall, we
believe that the scientific advantages generated by combining
the two data sets outweigh the limitations documented above.

Collectively, these data indicate that AcbC MSNs may exhibit
a specific long-term estradiol sensitivity in intrinsic excitability
and an acute estradiol sensitivity in excitatory synapse properties
that could be related to the AcbC’s role in motivated reproductive
behaviors (Tonn Eisinger et al. 2018). These behaviors include,
perhaps, rapid changes in sexual receptivity detected during the
estrous cycle (Micevych et al. 2017; Yoest et al. 2018), paced
mating behavior (Jenkins and Becker 2001), sexual reward
(Meisel and Mullins 2006), and locomotor and anxiety-related
behaviors (Krentzel and Meitzen 2018; Krentzel et al. 2020;
Miller et al. 2020). Importantly, correlation is not causation, and
an important future direction of this research will be to establish
causal roles of circulating estradiol and progesterone levels via
exogenous hormone supplementation of ovariectomized (OVX)
females. Future research will also need to determine whether
estradiol and progesterone are acting directly on the nucleus
accumbens, and whether estradiol and progesterone are acting on
different cellular targets.

Table 3. Correlations between estradiol and progesterone with AcbC MSN electrophysiological properties

Property

Correlations (r, P)

Estradiol Progesterone Estradiol � Progesterone

mEPSC frequency, Hz �0.01, 0.93 �0.30, 0.03 0.23, 0.10
mEPSC amplitude, pA 0.06, 0.70 0.35, 0.01 0.28, 0.04
mEPSC decay, ms �0.001, 0.99 0.08, 0.57 0.07, 0.65
Resting membrane potential, mV �0.25, 0.02 �0.12, 0.28 0.24, 0.02
Input resistance, M� �0.20, 0.05 �0.19, 0.08 0.26, 0.01
Rectified range input resistance, M� �0.16, 0.12 �0.12, 0.24 0.22, 0.04
Inward rectification, M� �0.17, 0.12 �0.18, 0.09 0.20, 0.05
Percent inward rectification, % 0.15, 0.16 0.11, 0.32 0.13, 0.22
Sag index (unitless) 0.03, 0.76 0.04, 0.68 0.05, 0.62
Time constant of the membrane, ms �0.21, 0.04 �0.12, 0.28 0.18, 0.09
Capacitance, pF 0.03, 0.77 0.03, 0.78 0.08, 0.46
Rheobase, pA 0.28, 0.01 �0.02, 0.85 0.18, 0.09
Delay to first AP, ms 0.21, 0.06 0.06, 0.60 0.12, 0.27
AP threshold, mV 0.14, 0.18 0.02, 0.84 0.09, 0.38
AP amplitude, mV 0.04, 0.70 �0.06, 0.57 0.03, 0.77
AP width at half-peak amplitude, ms �0.01, 0.95 �0.01, 0.90 0.01, 0.93
AHP peak amplitude, mV 0.05, 0.64 �0.04, 0.68 0.04, 0.74
AHP time to peak, ms �0.15, 0.15 �0.09, 0.39 0.16, 0.14
FI slope, Hz/nA �0.14, 0.20 0.03, 0.76 0.01, 0.35

Relationship between estradiol or progesterone and estradiol plus progesterone with excitatory synaptic input and intrinsic excitability properties of medium
spiny neurons (MSNs) in gonad-intact adult rat nucleus accumbens core (AbcC) across the estrous cycle. Boldface indicates statistical significance. Data were
analyzed using multiple linear regression. AHP, afterhyperpolarization; AP, action potential; FI, evoked firing rate-to-positive current curve; mEPSC, miniature
excitatory postsynaptic current.
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Although most striatal sex-focused research has concen-
trated on estradiol (Meitzen et al. 2018; Yoest et al. 2014),
progesterone is also an important factor for the estrous cycle,
especially for late proestrus and estrus phases. In this study, we
found that progesterone correlated with several excitatory syn-

apse properties, including mEPSC frequency and amplitude.
Consistent with a possible relationship of progesterone and
excitatory synapse properties, mEPSC frequency during late
proestrus drastically decreased to levels unrivaled by other
estrous cycle phases while maintaining comparable levels of
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intrinsic excitability to early proestrus and estrus MSNs. This
sharp decrease in mEPSC frequency suggests a curtailment in
excitatory synaptic properties that might be mediated by an
acute effect of progesterone, in addition to the acute action of
estradiol discussed above (Krentzel et al. 2019). Regardless of
the underlying mechanism, there is precedent for progesterone
inducing differences in synapse properties either in the context
of the estrous cycle or via exogenous supplementation in
ovariectomized animals. Progesterone exposure has been
shown to rapidly decrease dendritic spine density in pyramidal
neurons in area CA1 of the hippocampus in female rats during
the 24-h window between late proestrus and estrus (Woolley-
and McEwen 1993). A decrease in dendritic spine density often
but not always correlates with a decrease in mEPSC frequency.
Thus it is possible that just as in the hippocampus, increasing
circulating levels of progesterone in the AcbC during late
proestrus may induce the sharp decrease in mEPSC frequency,
bearing in mind that this may be one of several mechanisms

that synergistically work to decrease excitatory synapse prop-
erties.

Regarding specific progesterone action in the AcbC and
other striatal regions, select studies have directly addressed this
question. Importantly, evidence for progesterone receptor ex-
pression in the striatal regions has been documented in several
species that include rodents and birds. Thus here we briefly
review relevant evidence for striatal progesterone action. A
primary culture study on striatal cells from C57B2/J6 mice
detected progesterone receptor encoding mRNA (Piechota et
al. 2017). In rats, bovine serum albumin (BSA)-conjugated
progesterone bound to striatal cells, demonstrating the pres-
ence of membrane-associated progesterone receptors (Dluzen
and Ramirez 1989b; Ke and Ramirez 1990). A study in the
domestic hen identified AcbC cell nuclei expressing proges-
terone receptors by using immunohistochemistry (Sterling et
al. 1987). In reference to progesterone action in the striatum, a
study from 1984 found that progesterone exerted a biphasic
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effect on dopamine release. Progesterone administration to
OVX-estradiol-primed female rats 2 to 12 h before euthanasia
potentiated spontaneous- and amphetamine-induced dopamine
release, while progesterone administration 24 h before eutha-
nasia largely inhibited the spontaneous- and amphetamine-
induced release of dopamine (Dluzen and Ramirez 1984). This
difference in temporal action of progesterone is highly sugges-
tive of possible differential temporal actions in the context of
the estrous cycle. Another study by the same group found that
amphetamine application along with a pulsatile administration
of BSA-conjugated progesterone produced maximal levels of
dopamine release compared with continuous BSA-conjugated
progesterone application or vehicle controls (Dluzen and
Ramirez 1989a, 1989b). In a different study, progesterone and
N-methyl-D-aspartate (NMDA) application onto striatal slices
from proestrus female rats amplified the release of dopamine
that was normally caused by NMDA administration alone
(Cabrera and Navarro 1996). These studies suggest a close
interaction between progesterone and glutamatergic systems in
the striatum that modulate the release of dopamine, in addition
to the well-known role of estradiol. In a pathological context,
progesterone has been shown to modulate AcbC-mediated
behaviors related to drugs of abuse (Becker 1999). Cocaine-
induced place preference behavior was decreased in rats that
received an acute dose of progesterone (Russo et al. 2003). In
humans, women in the luteal phase of the menstrual cycle,
when progesterone levels are high, have a reduced desire to
smoke cocaine and an attenuated subjective response to co-
caine than during the follicular phase (Evans and Foltin 2006;
Sofuoglu et al. 2002), albeit the luteal phase also features
moderate levels of estradiol. Finally, in addition to a possible
role of progesterone in regulating excitatory synapse, proges-
terone metabolites such as allopregnanolone have long been
documented to act on GABA receptors, which AcbC MSNs
also express (Bitran et al. 1995). Collectively, this body of
evidence suggests that progesterone may modulate the electro-
physiology AcbC MSNs and resulting behaviors.

So far, we have discussed the effects of estradiol and
progesterone separately. However, our study also indicates that
some electrophysiological properties correlate with estradiol
and progesterone in combination. These properties include
mEPSC amplitude, resting membrane potential, and input
resistance in both the linear and rectified ranges. The combined
action of estradiol and progesterone in the regulation of these
properties is supported by the dual action of these hormones in
proestrus and potential after-actions in estrus (Becker et al.
2002) (Fig. 8). This suggests several possible hormonal mech-
anisms that may induce the sharp decrease in mEPSC fre-
quency in late proestrus (Fig. 8). All of these possible mech-
anisms focus on a presynaptic locus of action. This is because
the changes in mEPSC frequency are much more robust than
changes in mEPSC amplitude. With this stated, we acknowl-
edge that there are potential postsynaptic actions, as well. With
regard to presynaptic mechanisms, first, estradiol and proges-
terone may both decrease mEPSC properties, but via poten-
tially different mechanisms and timeframes. Following an
acute decrease in AcbC MSN mEPSC frequency via estradiol
(Krentzel et al. 2019), progesterone may also acutely decrease
mEPSC frequency, which is a testable hypothesis and can be
disproved or confirmed by future experiments. Both hormones
may also induce decreases in dendritic spine density, with
estradiol and progesterone exposure speeding this decrease as
has been show using exogenous exposure to ovariectomized
rat hippocampus (McEwen and Woolley 1994; Woolley and
McEwen 1993). If this model is accurate, then it predicts
that dendritic spine density will be decreased in the AcbC
during late proestrus and potentially estrus. It also predicts that,
like exogenous estradiol exposure, exogenous progesterone
exposure likewise decreases dendritic spine density in AcbC
MSNs. This model does not rule out other, synergistic potential
mechanisms. One mechanism is a possible association between
ovarian hormones and glial cells across the estrous cycle. Data
indicate that the number of axosomatic excitatory synapses on
neurons in the arcuate nucleus of the hypothalamus begins to
decrease during early proestrus, remains low until the morning
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of estrus, and then rises again by diestrus (Naftolin et al. 2007;
Olmos et al. 1989). This change in excitatory synapse number
is not because of a disappearance of excitatory synapses per se
but is rather due to remodeling of astroglia and astroglial
processes (García-Segura et al. 1994; Kohama et al. 1995).
This idea of fast changes in excitatory synapse properties is not
limited to the arcuate nucleus, as a similar but not identical
process has also been detected in the anteroventral periven-
tricular nucleus (Langub et al. 1994). If this process is present
in the AcbC, then differences in glia and perhaps microglia
function should be detectable across the estrous cycle phases.
Evidence of microglia sex-specifically altering dopamine in-
puts in the AcbC during development and puberty has already
been presented (Kopec et al. 2018). Further studies could shed
light on each of these potential mechanisms. Considered to-
gether, a comprehensive action of direct and combinatorial

estradiol and progesterone action, a decrease in dendritic
spines, and glial ensheathment may collectively act to decrease
excitatory synaptic input onto AcbC MSNs during late proes-
trus, potentially inducing the profound alteration of AcbC
MSN excitatory synapse properties.
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