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Abstract

Exposure to steroid sex hormones such as 17b-estradiol (estradiol) during early life potentially permanently masculinize neuron
electrophysiological phenotype. In rodents, one crucial component of this developmental process occurs in males, with estradiol
aromatized in the brain from testes-sourced testosterone. However, it is unknown whether most neuron electrophysiological
phenotypes are altered by this early masculinization process, including medium spiny neurons (MSNs) of the rat caudate-puta-
men. MSNs are the predominant and primary output neurons of the caudate-putamen and exhibit increased intrinsic excitability
in females compared to males. Here, we hypothesize that since perinatal estradiol exposure occurs in males, then a comparable
exposure in females to estradiol or its receptor agonists would be sufficient to induce masculinization. To test this hypothesis,
we injected perinatal female rats with estradiol or its receptor agonists and then later assessed MSN electrophysiology. Female
and male rats on postnatal day 0 and 1 were systemically injected with either vehicle, estradiol, the estrogen receptor (ER)a ago-
nist PPT, the ERb agonist DPN, or the G-protein-coupled receptor 1 (GPER-1) agonist G1. On postnatal days 19 ±2, MSN electro-
physiological properties were assessed using whole cell patch clamp recordings. Estradiol exposure abolished increased
intrinsic excitability in female compared to male MSNs. Exposure to either an ERa or ERb agonist masculinized female MSN
evoked action potential firing rate properties, whereas exposure to an ERb agonist masculinized female MSN inward rectification
properties. Exposure to ER agonists minimally impacted male MSN electrophysiological properties. These findings indicate that
perinatal estradiol exposure masculinizes MSN electrophysiological phenotype via activation of ERa and ERb.

NEW & NOTEWORTHY This study is the first to demonstrate that estradiol and estrogen receptor a and b stimulation during
early development sexually differentiates the electrophysiological properties of caudate-putamen medium spiny neurons, the pri-
mary output neuron of the striatal regions. Overall, this evidence provides new insight into the neuroendocrine mechanism by
which caudate-putamen neuron electrophysiology is sexually differentiated and demonstrates the powerful action of early hor-
mone exposure upon individual neuron electrophysiology.

caudate putamen; dorsal striatum; electrophysiology; estradiol; estrogen receptor

INTRODUCTION

Biological sex and relevant sex steroid hormone exposure is
increasingly appreciated asmodulators of neuron electrophysi-
ology across awide range of brain regions (1–4). Rat striatalme-
dium spiny neurons (MSNs), also called spiny projection
neurons (5), exhibit sex differences and sensitivity to sex ste-
roid hormones such as 17b-estradiol (estradiol). MSNs are
present in all major striatal regions, including the nucleus

accumbens core, shell, and the focus of this investigation, the
caudate-putamen. MSNs are the chief output neuron of the
striatal regions and constitute �95% of the caudate-putamen
neuron population. Changes in caudate-putamen MSN electri-
cal activity directly impacts animal behavior (6–8). In adult-
hood, female rat MSNs express membrane-associated estrogen
receptors (ERs) a, b, and G-protein-coupled receptor 1 (GPER-1)
(9–15). In early development, MSNs express nuclear ERs and
GPER-1 (16). Dopamine receptors are also expressed by MSNs,
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and decades of ongoing research indicate that caudate-puta-
men dopaminergic and other modulatory systems exhibit sex
differences and estradiol sensitivity as well (17–19). Overall,
MSNs are a sexually differentiated neuron type which exhibit a
complex pattern of sex differences in their electrophysiological
properties that vary with developmental period, striatal region
(including the caudate-putamen, nucleus accumbens core, and
nucleus accumbens shell), species, estrous cycle phase, and
acute estradiol and dopamine exposure (9, 11, 20–32).

Caudate-putamen MSNs recorded from females compared
to males demonstrate increased intrinsic excitability, begin-
ning just before puberty and persisting into adulthood, during
which intrinsic excitability ismodulated by the hormones asso-
ciated with the estrous cycle (21, 32). This sex difference in
intrinsic excitability manifests in several aspects of neuronal
electrophysiology, but most prominently in increased evoked
action potential firing rates in female compared to male MSNs.
This increase in evoked action potential rate occurs before pu-
berty, indicating that this sex difference is established early in
life. In male rats, early development features a testicular-
sourced testosterone surge which can be aromatized into estra-
diol. Thus, this sex difference could be potentially generated
by the organizing actions of perinatal estradiol exposure, a pro-
cess which would normally occur in males but not females.
Recently, the presence of nuclear ERs and GPER-1 were estab-
lished in the caudate-putamen of female and male rats during
the perinatal developmental period (16), allowing for the possi-
bility that estradiol acts on nuclear ER to masculinize MSNs
during this developmental period. Whether these or other nu-
clear ER, or perinatal estradiol action at all, organizes sex dif-
ferences in caudate-putamenMSNs is unknown.

Here, we elucidate the impact of perinatal estradiol and ER
agonist exposure on caudate-putamen MSN electrophysiologi-
cal properties. We reasoned that if perinatal exposure to mas-
culinizing/defeminizing levels of estradiol decreases evoked
firing rates in male MSNs, then a comparable estradiol expo-
sure in females should also decrease MSN evoked firing rates.
Based upon this reasoning, we articulated three hypotheses for
testing. First, we test the hypothesis that perinatal estradiol ex-
posure sexually differentiates caudate-putamen MSN electro-
physiological properties. Second, we test the hypothesis that
perinatal pharmacological stimulation of either ERa, ERb, or
GPER-1 would mimic the perinatal effects of estradiol in
females. Third, we test the hypothesis that perinatal pharmaco-
logical stimulation of either ERa, ERb, or GPER-1 would exert a
less robust effect in males. To test these hypotheses, female
and male rats on postnatal day 0 and 1 were systemically
injected with either vehicle, estradiol, the ERa agonist PPT, the
ERb agonist DPN, or the GPER-1 agonist G1. On postnatal days
19±2, a comprehensive battery of MSN electrophysiological
properties were assessed via whole cell patch clamp technique.
This age range was chosen, as it features mature and sexually
differentiated MSN electrophysiological properties (21) but is
before puberty and the influence of the estrous cycle (32).

MATERIALS AND METHODS

Animals

All animal protocols were approved by the Institutional
Animal Care and Use Committee at North Carolina State

University. Female (n = 55) andmale (n = 39) Sprague Dawley
CD IGS rats were born from 23 timed-pregnant females pur-
chased from Charles River (Charles River). Rats were housed
with their littermates and dams in a temperature- and light-
controlled room (23�C, 40% humidity, 12-h light, 12-h dark
cycle) at the Biological Resource Facility of North Carolina
State University. Age at recording was postnatal day (P)
19±2 during the prepubertal developmental period and was
matched between sexes (mean ± SE: female, P 19.7±2.3;
male, P 19.3±2.2). Animals were not weaned before experi-
mental use. All cages were washed polysulfone bisphenol A
free and were filled with bedding manufactured from virgin
hardwood chips (Beta Chip; NEPCO, Warrensburg, NY) to
avoid the endocrine disruptors present in corncob bedding
(33–35). Soy protein-free rodent chow (2020X; Teklad,
Madison, WI) and glass-bottle provided water were available
ad libitum. All pups, on P0 and P1, received a subcutaneous
injection of either 50mL vehicle (10% dimethyl sulfoxide in
90% sesame oil), or vehicle containing estradiol (100μg 17b-
estradiol, Sigma Life Science), 10μg G1 (a selective agonist of
GPER-1, Cayman Chemical), 100μg PPT (subtype-selective
ERa agonist, Tocris Bioscience), or 100μg DPN (highly
potent ERb agonist, Tocris Bioscience). Dose protocols were
adapted from previously published techniques (22, 36, 37).
Injections were performed across at least two litters and
were balanced in calendar time.

Acute Brain Slice Preparation

Brain slices for electrophysiological recordings were pre-
pared as previously described (38). Briefly, rats were deeply
anesthetized with isoflurane gas and killed by decapitation.
The brain was then dissected rapidly into ice-cold, oxygen-
ated sucrose artificial cerebrospinal fluid (ACSF) containing
75mM sucrose, 1.25mM NaH2PO4, 3mM MgCl2, 0.5mM
CaCl2, 2.4mM Na pyruvate, and 1.3mM ascorbic acid from
Sigma-Aldrich, and 75mM NaCl, 25mM NaHCO3, 15mM
dextrose, 2mM KCl from Fisher. The osmolarity of the su-
crose ACSF was 295–305 mOsm, and the pH was between 7.2
and 7.4. Coronal brain slices (300μm) were prepared using a
vibratome and then incubated in regular ACSF containing
126mM NaCl, 26mM NaHCO3, 10mM dextrose, 3mM KCl,
1.25mM NaH2PO4, 1mM MgCl2, and 2mM CaCl2 (295–305
mOsm; pH 7.2–7.4) for 30min at 30± 1�C, and then at least
30min at room temperature (21�C–23�C). Slices were stored
submerged in room temperature, oxygenated ACSF for up to
5h after sectioning in a large volume bath holder.

Electrophysiological Recording

Slices were allowed to rest at least 1h after sectioning.
They were then placed in a Zeiss Axioscope equipped with
IRDIC optics, a Dage IR-1000 video camera, and �10 and
�40 lenses with optical zoom, and superfused with oxygen-
ated ACSF heated to �28�C (female, 28.1 ±0.4; male, 28.3±
0.5). Whole cell patch-clamp recordings were used to record
the electric properties of MSNs in the caudate-putamen (Fig.
1), with glass electrodes containing 115mM K D-gluconate,
8mMNaCl, 2mM EGTA, 2mMMgCl2, 2mMMgATP, 0.3mM
NaGTP, 10mM phosphocreatine from Sigma-Aldrich, and
10mM HEPES from Fisher (285 mOsm; pH 7.2–7.4). Signals
were amplified, filtered (2kHz), and digitized (10kHz) with a
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MultiClamp 700B amplifier attached to a Digidata 1550 sys-
tem and a personal computer using pClamp 10 software.
Membrane potentials were corrected for a calculated liquid
junction potential of �13.5mV. Using previously described
procedures (21), recordings were first made in current clamp
to assess neuronal electrophysiological properties. MSNs
were identified by their medium-sized somas, the presence
of a slow ramping subthreshold depolarization in response

to low-magnitude positive current injections, an action
potential amplitude�25mV, a hyperpolarized resting poten-
tial more negative than �65mV, inward rectification, and
prominent spike after hyperpolarization (AHP) (39, 40). In a
subset of recordings from males and females exposed to ve-
hicle or estradiol, oxygenated ACSF containing the GABAA

receptor antagonist picrotoxin (150mM; Fisher) and the volt-
age-gated sodium channel blocker tetrodotoxin (TTX, 1mm,
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Figure 1. Location of whole cell patch clamped medium spiny neurons (MSNs) sorted by experimental group in the caudate-putamen of female and
male rats. Depictions are deaggregated between four different schematics to enhance location clarity. Vehicle, 17b-estradiol (estradiol), G1, PPT, and
DPN females and males represent MSNs recorded from animals receiving perinatal injections of vehicle, estradiol, or estrogen receptor agonists,
respectively. AC, anterior commissure; Acb, nucleus accumbens; LV, lateral ventricle; 3V, third ventricle.
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Abcam Biochemicals) was applied to the bath to abolish
action potentials and inhibitory postsynaptic current events,
respectively. Once positive current injection no longer eli-
cited an action potential, MSNs were voltage-clamped
at �70mV and miniature excitatory postsynaptic cur-
rent events (mEPSCs) were recorded for at least 5 min.
These settings specifically target AMPA receptor-mediated
mEPSCs, as confirmed via AMPA receptor antagonist experi-
ments (26). mEPSC analysis was chosen to better differenti-
ate between pre- and postsynaptic effects. Input and series
resistance was monitored for changes throughout the exp-
eriment.

Data Recording and Analysis

Intrinsic electrophysiological properties and action poten-
tial characteristics were analyzed using pClamp 10. After
break in, the resting membrane potential was first allowed to
stabilize �1–2min (41). Two to four series of depolarizing
and hyperpolarizing current injections were applied to elicit
basic neurophysiological properties (22). Most properties
measured followed the definitions of Cao and colleagues
(25), which were originally derived from those of Perkel and
colleagues (42–45). For each neuron, measurements were
made of two to four action potentials generated from mini-
mal current injections. These measurements were then aver-
aged to generate the reported action potential measurement
for that neuron. For action potential measurements, only the
first generated action potential was used. Action potential
threshold was defined as the first point of sustained positive
acceleration of voltage (d2V/dt2) that was also more than
three times the SD of membrane noise before the detected
threshold (46). The slope of the linear range of the evoked fir-
ing rate to positive current curve (FI slope) was calculated
from the first current stimulus which evoked an action
potential to the first current stimulus that generated an
evoked firing rate that reached the maximum, or persisted
for at least three consecutive current stimuli. The evoked fir-
ing rate is defined as the number of action potentials evoked
over the duration of the current injection. Initial firing rate is
defined as the inverse of the first interspike interval and
mean steady-state firing rate as the average firing rate over
the last 300ms of the current pulse (47). Input resistance in
the linear, nonrectified range was calculated from the
steady-state membrane potential in response to �0.02-nA
hyperpolarizing pulses, the least hyperpolarizing current
pulse injected into the neuron that produces a reliable
measureable change in steady-state membrane poten-
tial. Rectified range input resistance, inward rectification,
and percent inward rectification were calculated from the
steady-state membrane potential in response to the most
hyperpolarizing current pulse injected into the neuron (40).
Inward rectification was defined as the difference between
the measured input resistance from the linear and rectified
ranges. A neuron with no rectification will have an inward
rectification score of zero. Percent inward rectification was
defined as the rectified range input resistance divided by the
linear range input resistance multiplied by 100. A neuron
with no rectification will have a percent inward rectification
of 100%. A neuron exhibiting rectification will have a small
percent inward rectification score. The membrane time

constant was calculated by fitting a single exponential curve
to the membrane potential change in response to �0.02nA
hyperpolarizing pulses. Membrane capacitance was calcu-
lated using the following equation: capacitance = time con-
stant of the membrane/input resistance. mEPSCs frequency,
amplitude, and decay were analyzed using Mini Analysis
(Synaptosoft, http://www.synaptosoft.com/MiniAnalysis/), fol-
lowing Cao et al. (22). Recordings were filtered (1kHz), and
mEPSC threshold was set at a minimum value of 5pA.
Accurate event detection was validated by visual inspection.

Statistics

All experimental data was analyzed via Graphpad Prism
version 6.07 (La Jolla, CA). Data analysis was a priori organ-
ized to address three hypothesis: the effects of perinatal es-
tradiol exposure on female and male MSNs, the effects of
perinatal ER agonist exposure on female MSNs, and the
effects of perinatal ER agonist exposure on male MSNs. The
effects of perinatal estradiol exposure on female and male
MSNs were analyzed using two-way ANOVAs with Fisher’s
least significant difference (LSD) post hoc tests to maximize
statistical power. The effects of perinatal ER agonist expo-
sure on female MSNs were analyzed using one-way ANOVAs
with Fisher’s least significant difference (LSD) post hoc tests.
The effects of perinatal ER agonist exposure on male MSNs
were analyzed using one-way ANOVAs with Fisher’s least
significant difference (LSD) post hoc tests. Within all three
analysis groups differences in FI and IV curves were further
decomposed via Pearson’s correlations accompanied by
analyses of covariance (ANCOVAs) to detect differences in
slope values. P values�0.05 were considered as significant
and P values�0.10 were considered a trend. Data are pre-
sented asmean±SE.

RESULTS

Perinatal Exposure to Estradiol Masculinizes Female
Evoked Action Potential Firing Rates

To test the hypothesis that perinatal estradiol exposure
sexually differentiates caudate-putamenMSN electrophysio-
logical properties, we injectedmale and female rat pups with
vehicle or estradiol solution on postnatal day 0 and 1. We
made acute brain slices on postnatal day 19±2 and assessed
a comprehensive battery of caudate-putamen MSN electro-
physiological properties via injections of a series of currents
(Fig. 2A; Table 1). Complete statistical information as well as
documentation of all assessed electrophysiological proper-
ties across all experimental groups are located in Tables 1–3.
We reasoned that if perinatal exposure to masculinizing/
defeminizing levels of estradiol naturally decreases evoked
firing rates in males, then a comparable hormone exposure
in females should also decrease evoked firing rates.

Female MSNs exposed to vehicle exhibited increased
action potential firing rates compared tomaleMSNs exposed
to vehicle, and this increase was masculinized in females by
exposure to perinatal estradiol (Fig. 2B). A linear regression
analysis revealed that the slopes of the action potential fir-
ing rates evoked by injected depolarizing current curves
were significantly different between treatment groups
[P < 0.0001; F(3,36)= 12.4255]. We further quantified these
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differences by comparing the slope of the evoked firing rate
to positive current curve (FI slope) between groups (Fig. 2C).
MSNs from females injected with vehicle and males injected
with estradiol demonstrated steeper FI slope compared to
MSNs recorded frommale animals injected with vehicle and
female animals injected with estradiol. This analysis indi-
cates that perinatal estradiol exposure masculinized female
neurons to generate fewer action potentials per injected cur-
rent throughout the linear range, similar to vehicle-exposed
males. Supporting this analysis, vehicle-treated females and
estradiol-treated males showed increased initial firing rates
compared to vehicle-treated males and estradiol-treated
females at D0.01, D0.02, and D0.03nA from the minimum
current injection necessary for action potential generation
[Fig. 2D; Treatment Group: F(3,440)= 13.85, P < 0.0001;
Current: F(3,440)=85.86, P < 0.0001; Interaction: F(9,440)=

0.8819, P = 0.5413]. A similar pattern was observed for steady
state firing rate [Fig. 2E; Treatment Group: F(3,440) = 13.55,
P < 0.0001; Current: F(3,440)=89.78, P < 0.0001; Inter-
action: F(9,440)=0.7604, P = 0.6532]. Males exposed to estra-
diol showed increased values compared to vehicle-treated
males and estradiol-treated females, whereas vehicle-treated
females demonstrated intermediate values at D0.01, D0.02,
and D0.03nA from theminimum current injection necessary
for action potential generation.

Perinatal Exposure to Estradiol Masculinizes Female
Afterhyperpolarization Peak and Rheobase

An estradiol-induced masculinization of evoked firing
rate indicates that estradiol may likewise masculinize MSN
action potential (AP) properties or the membrane properties.
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Regarding action potential properties, estradiol masculi-
nized the amplitude of the afterhyperpolarization (AHP)
peak in females (Fig. 3A). Females exposed to estradiol
showed increased AHP peaks compared to females exposed
to vehicle and males exposed to estradiol. Rheobase, the
amount of positive injected current necessary to generate
the first action potential, was also altered by estradiol in
females (Fig. 3B). Females exposed to estradiol showed
increased rheobase compared to females and males exposed

to vehicle, and males exposed to estradiol. Typically,
increased rheobase indicates decreased neuronal excitabil-
ity. Differences in rheobase are typically accompanied by
differences in electrophysiological properties such as AP
threshold, resting membrane potential, or passive properties
such as input resistance (Table 1). We calculated linear
regressions between MSN rheobase and, respectively, AP
threshold, resting membrane potential, and input resistance
in the linear range. Increased rheobase strongly associated

Table 1. Caudate-putamen medium spiny neuron electrophysiological properties from females and males exposed
to vehicle or estradiol during the perinatal period

Property Vehicle Estradiol Statistics (F, P)

Resting membrane potential, mV F: �82.8 ± 1.7 (24) �86.1 ± 1.6 (29) 0.11, 0.74
M: �84.2 ± 1.3 (28) �86.6 ± 1.4 (37) 0.38, 0.53

3.48, 0.06
Input resistance, MX F: 260.2 ± 26.9 (24) 213.9 ± 14.3 (29) 0.90, 0.34

M: 245.2 ± 15.3 (28) 265.8 ± 17.2 (37) 2.98, 0.09
0.43, 0.51

Rectified range input resistance, MX F: 200.1 ± 13.7 (24) 187.1 ± 11.1 (29) 0.72, 0.39
M: 209.6 ± 12.2 (28) 218.0 ± 12.1 (37) 2.61, 0.11

0.03, 0.85
Inward rectification, MX F: 62.7 ± 14.8 (24) 26.8 ±4.6 (29) 7.60, 0.0068

M: 35.5 ± 4.7 (28) 47.8 ±8.5 (37) 0.12, 0.73
1.82, 0.18

% Inward rectification, % F: 82.2 ± 2.8 (24) 89.0 ± 1.4 (29) 6.70, 0.0109
M: 86.5 ± 1.5 (28) 83.6 ± 1.7 (37) 0.09, 0.76

1.08, 0.18
Time constant of the membrane, ms F: 16.6 ± 2.5 (24) 12.0 ± 1.1 (29) 6.70, 0.07

M: 13.2 ± 1.0 (28) 14.1 ± 1.2 (37) 0.09, 0.68
1.08, 0.21

Capacitance, pF F: 61.6 ± 4.8 (24) 57.6 ± 4.6 (29) 0.21, 0.65
M: 54.9 ± 3.1 (28) 54.4 ± 3.0 (37) 1.63, 0.20

0.33, 0.56
Rheobase, pA F: 101.9 ± 12.8 (24) 161.5 ± 16.7 (29) 5.5, 0.0204

M: 111.7 ± 10.5 (28) 112.2 ±9.3 (37) 2.5, 0.12
5.7, 0.0182

Delay to first AP, ms F: 310.1 ± 27.0 (24) 356.8 ± 22.8 (29) 1.08, 0.30
M: 344.1 ± 17.0 (28) 348.9 ± 14.8 (37) 0.42, 0.52

1.64, 0.20
AP threshold, mV F: �48.4 ± 1.7 (24) �44.4 ± 1.9 (29) 3.64, 0.0589

M: �45.8 ± 2.0 (28) �48.7 ± 1.6 (37) 0.24, 0.63
0.09, 0.76

AP width at half-peak amplitude, ms F: 2.6 ± 0.2 (24) 2.5 ± 0.1 (29) 1.10, 0.30
M: 3.0 ± 0.2 (28) 2.5 ± 0.1 (37) 3.41, 0.0672

3.09, 0.0813
AHP peak amplitude, mV F: 27.6 ± 0.5 (24) 28.6 ±0.3 (29) 6.5, 0.0120

M: 28.4 ±0.4 (28) 27.5 ±0.3 (37) 0.2, 0.65
0.1, 0.73

AHP time to peak, ms F: 33.5 ± 3.4 (24) 33.7 ± 2.1 (29) 1.1, 0.29
M: 37.5 ± 2.3 (28) 32.7 ± 1.7 (37) 0.4, 0.52

1.0, 0.31
FI slope, Hz/nA F: 207.1 ± 24.2 (24) 167.2 ± 7.0 (29) 9.4, 0.0027

M: 157.9 ± 8.5 (28) 212.3 ± 16.6 (37) 0.0, 0.88
0.2, 0.65

mEPSC frequency, Hz F: 2.3 ± 0.3 (21) 3.3 ±0.5 (24) 0.32, 0.57
M: 2.0 ±0.3 (24) 3.6 ±0.8 (7) 0.00, 0.99

5.9, 0.0178
mEPSC amplitude, pA F: 10.0 ± 0.3 (21) 10.8 ± 0.5 (24) 0.31, 0.58

M: 10.0 ± 0.7 (24) 11.5 ± 1.2 (7) 0.31, 0.58
2.6, 0.11

mEPSC decay, ms F: 2.7 ± 0.2 (21) 2.7 ± 0.2 (24) 0.86, 0.36
M:3.1 ± 0.2 (24) 2.7 ± 0.4 (7) 0.42, 0.52

0.7, 0.40

Electrophysiological properties recorded from caudate-putamen MSNs from prepubertal female and male rats exposed to either vehi-
cle or estradiol in the perinatal period. Values are means ± SE. Numbers in parentheses indicate the number of neurons in each group
(experimental n). Statistics column lists F and P values for interaction, sex, and hormone from top to bottom for a two-way ANOVA anal-
ysis with sex and estradiol exposure as factors. Bold font indicates statistical significance. AHP, afterhyperpolarization; AP, action poten-
tial; F, female; FI, evoked firing rate-to-positive current curve; M, male; mEPSC, miniature excitatory postsynaptic current.
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with depolarized AP threshold (Fig. 4A; Slope: 81.45, r2 =
0.3387, P < 0.0001). Rheobase and resting membrane poten-
tial values also correlated, with increased rheobase values
associating with hyperpolarized resting membrane potential
values (Fig. 4B; Slope: �53.95, r2 = 0.2105, P < 0.0001).
Likewise, rheobase and input resistance in the linear range
values also correlated, with increased rheobase values asso-
ciating with decreased input resistance values (Fig. 4C;
Slope: �890.7, r2 = 0.3866, P < 0.0001). This analysis is con-
sistent with the conclusion that estradiol-induced masculin-
ization in rheobase is dependent upon changes in AP
threshold, neuron resting membrane potential, and input re-
sistance in the linear range. Overall, these data indicate that
estradiol acts to masculinize female MSN intrinsic excitabil-
ity in a multifaceted manner, by robustly changing the am-
plitude of the AHP peak and the rheobase, while inducing
smaller changes in other MSN properties.

Perinatal Exposure to Estradiol Masculinizes Female
Inward Rectification

The strong association between increased rheobase and
decreased input resistance in the linear range suggests that
further analysis of input resistance properties is warranted.
To investigate input resistance in the linear and rectified
ranges, we injected a series of hyperpolarizing current injec-
tions in MSNs from estradiol- and vehicle-treated males and
females (Fig. 5A) and first calculated the steady-state voltage
deflection evoked by injected hyperpolarizing current curve
(IV curve; Fig. 5B). A linear regression analysis revealed that
estradiol masculinized the slopes of the steady-state voltage
deflections evoked by injected hyperpolarizing current
curves [P = 0.00378; F(3,1715) =4.49544]. Interestingly, no
significant differences were detected in the absolute values
of input resistance in the linear and rectified ranges (Table
1). Linear range input resistance is calculated from the least
hyperpolarizing current pulse injected into the neuron that
produces a reliable measureable change in steady-state
membrane potential. Rectified range input resistance is cal-
culated from the steady-state membrane potential in
response to the most hyperpolarizing current pulse injected
into the neuron. A nonrectifying neuron would exhibit iden-
tical linear range and rectified range input resistances. This
lack of a robust action of estradiol on absolute input resist-
ance measurements suggests that estradiol may be acting to
masculinize MSN inward rectification itself. To assess this
question, we quantified both inward rectification and percent
inward rectification. Inward rectification is calculated as the
linear range input resistance minus the rectified range input
resistance. Thus, an increased inward rectification value cor-
responds to a greater inwardly rectifyingmembrane potential.
Estradiol masculinized inward rectification in females (Fig.
5C). Likewise, estradiol masculinized % inward rectification
in females (Fig. 5D). Percent inward rectification is calculated
as (linear range input resistance minus the rectified range
input resistance)/100. Thus, decreased percent inward rectifi-
cation values correspond with a greater inwardly rectifying
membrane potential. Percent inward rectification is a useful
additional analysis as it normalizes for differences in input re-
sistance magnitude. This analysis is consistent with the

Figure 3. Action potential (AP) afterhyperpolarization (AHP) peak and AP
rheobase varied by sex and perinatal exposure to estradiol. A: AP AHP
peak amplitude was larger in MSNs recorded from females with perinatal
exposure to estradiol compared to females with perinatal exposure to ve-
hicle and males with perinatal exposure to estradiol. B: AP rheobase was
larger in MSNs recorded from females with perinatal exposure to estradiol
compared to females and males with perinatal exposure to vehicle and
males with perinatal exposure to estradiol. MSN, medium spiny neuron.
#P = 0.0522; 	P< 0.05; 		P< 0.01.

Figure 4. Differences in AP threshold, MSN resting membrane potential, and input resistance in the linear range correlated with differences in AP rheo-
base. A: depolarized AP threshold values associated with increased AP rheobase values. B: hyperpolarized MSN resting membrane potential values
associated with increased AP rheobase values. C: decreased MSN input resistance in the linear range values associated with increased AP rheobase
values. AP, action potential; MSN, medium spiny neuron.
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conclusion that estradiol acts to masculinize the properties of
female MSN inward rectification.

Perinatal Exposure to an ERa or ERb Agonist
Masculinizes Female MSN Evoked Action Potential
Firing Rate

Given that perinatal estradiol exposure masculinized MSN
intrinsic excitability in females, we reasoned that exposure to
an ER agonist would mimic estradiol’s effects. Female rat pups
were injected with either the ERa agonist PPT, the ERb agonist
DPN, or the GPER-1 agonist G1, and compared to female and
male pups injected with vehicle solution (Fig. 6A). A linear
regression analysis revealed that femaleMSNs exposed to either
PPT or DPN significantly masculinized evoked action potential
firing rate in females, unlike exposure to G1 [P = 0.001704; F
(4,45)=5.13574]. Evoked action potential firing rate differed
between males and females exposed to vehicle. Regarding FI
slope, femaleMSNs exposed to PPT or DPN exhibited decreased
action potential firing rates compared to female MSNs exposed
to vehicle, unlike female MSNs exposed to G1 (Fig. 6B).
Interestingly, AP threshold values differed between groups,
with MSNs from females injected with DPN exhibiting depolar-
ized threshold values compared to females exposed to PPT and
G1 (Fig. 6C). Rheobase and AP afterhyperpolarization values did

not differ significantly (Table 2). Overall, these changes in
evoked action potential firing rate induced by PPT or DPN ex-
posure and subsequent ERa or ERb activation largely mimic
those changes induced by estradiol exposure.

Perinatal Exposure to an ERb Agonist Masculinizes
Female MSN Inward Rectification

To assess whether ER agonist exposure induces differen-
ces in the input resistance between the linear and rectified
ranges, we plotted linear range input resistance versus recti-
fied range input resistance for females exposed to vehicle,
PPT, DPN, and G1, and males exposed to vehicle (Fig. 7). A
linear regression analysis revealed that the slopes between
the calculated regression lines significantly differed [P <
0.0001; F(4,125) = 9.90]. Females with perinatal exposure to
vehicle displayed the greatest difference between the linear
range and rectified range input resistances (Slope: 0.48±
0.04, y-intercept: 75.13± 10.83, r2: 0.88, F: 165.8, P < 0.0001).
Males with perinatal exposure to vehicle and females with
perinatal exposure to the ERb agonist DPN displayed the
least differences between the linear and rectified range input
resistances (Vehicle Males: Slope: 0.77±0.04, y-intercept:
20.81 ± 10.28, r2: 0.93, F: 373.2, P < 0.0001; DPN Fema-
les: Slope: 0.78±0.05, y-intercept: 24.34± 14.08, r2: 0.92,

Figure 5. Input resistance in the rectified
range varied by sex and perinatal expo-
sure to estradiol. A: voltage response of a
MSN to a series of negative current injec-
tions, recorded from a male with perinatal
exposure to vehicle. “�76mV” indicates
resting membrane potential. B: injected
negative current to steady-stage voltage
deflection curve (IV curve). C: inward recti-
fication was increased in MSNs recorded
from females with perinatal exposure to
vehicle compared to females with perina-
tal exposure to estradiol and males with
perinatal exposure to vehicle. Inward recti-
fication was decreased MSNs recorded
from females with perinatal exposure to
estradiol compared to males with perinatal
exposure to estradiol.D: percent inward rec-
tification was decreased in MSNs recorded
from females with perinatal exposure to ve-
hicle compared to females with perinatal
exposure to estradiol. Percent inward recti-
fication was increased in MSNs recorded
from females with perinatal exposure to es-
tradiol compared to males with perinatal
exposure to estradiol. Note that decreased
percent inward rectification values typically
correspond with increased inward rectifica-
tion values. MSN, medium spiny neuron.
#P = 0.0733; 	P< 0.05; 		P< 0.01.
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F: 234.9, P < 0.0001). Exposure to PPT or G1 did not mascu-
linize the difference between the linear and rectified range
input resistances (PPT Females: Slope: 0.63±0.04, y-inter-
cept: 43.16± 11.19, r2: 0.91, F: 292.2, P < 0.0001; G1 Females:
Slope: 0.70±0.06, y-intercept: 19.65± 14.20, r2: 0.84, F: 142.3,
P < 0.0001). This finding indicates that perinatal expos-
ure to an ERb agonist masculinized female MSN inward

rectification to male levels, mimicking the effects of perina-
tal estradiol exposure.

Consistent with this conclusion, DPN but not PPT expo-
sure masculinized the calculated inward rectification in
females (Fig. 8A). Inward rectification is calculated as the lin-
ear range input resistance minus the rectified range input
resistance. Thus, an increased inward rectification value

Figure 6. Perinatal exposure to an ERa or ERb agonist masculinized female MSN evoked action potential firing rate. A: AP firing rate evoked by depola-
rizing current injection. AP firing rate was masculinized in MSNs recorded from females with perinatal exposure to the ERa agonist PPT and the ERb ago-
nist DPN. B: the slope of the evoked AP firing rate to depolarizing current injection curve (FI Slope) was masculinized in MSNs recorded from females
with perinatal exposure to the ERa agonist PPT and the ERb agonist DPN. C: AP threshold values were hyperpolarized in MSNs recorded from females
with perinatal exposure to the ERa agonist PPT and the GPER-1 agonist G1. AP, action potential; ER, estrogen receptor; MSN, medium spiny neuron. #P =
0.0876; 	P< 0.05; 		P< 0.01.

Table 2. Caudate-putamen medium spiny neuron electrophysiological properties from females exposed to PPT,
DPN, or G1 and females and males exposed to vehicle during the perinatal period

Property Vehicle PPT DPN G1 Statistics (F, P)

Resting membrane potential, mV F: �82.8 ± 1.7 (24) �85.3 ± 1.3 (31) �83.4 ± 1.2 (22) �86.5.9 ± 1.5 (30) 1.093
M: �84.2 ± 1.3 (28) 0.3628

Input resistance, MX F: 260.2 ± 26.9 (24) 287.1 ± 17.4 (31) 261.9 ± 18.7 (22) 232.9 ± 13.0 (30) 1.395
M: 245.2 ± 15.3 (28) 0.2392

Rectified range input resistance, MX F: 200.1 ± 13.7 (24) 224.8 ± 11.5 (31) 229.5 ± 15.3 (22) 181.9 ± 9.9 (30) 2.484
M: 209.6 ± 12.2 (28) 0.0468

Inward rectification, MX F: 62.7 ± 14.8 (24) 62.3 ± 7.3 (31) 32.4 ± 5.9 (22) 51.0 ± 5.6 (30) 2.989
M: 35.5 ± 4.7 (28) 0.0212

% Inward rectification, % F: 82.2 ± 2.8 (24) 79.9 ± 1.5 (31) 88.6 ± 1.7 (22) 79.2 ± 1.8 (30) 4.789
M: 86.5 ± 1.5 (28) 0.0012

Time constant of the membrane, ms F: 16.6 ± 2.5 (24) 18.0 ± 1.1 (31) 12.8 ± 0.8 (22) 15.7 ± 1.2 (30) 2.425
M: 13.2 ± 1.0 (28) 0.0513

Capacitance, pF F: 61.6 ± 4.8 (24) 66.2 ± 4.2 (31) 52.3 ± 4.9 (22) 70.5 ± 5.3 (30) 2.900
M: 54.9 ± 3.1 (28) 0.0245

Rheobase, pA F: 101.9 ± 12.8 (24) 95.5 ± 7.9 (31) 135.2 ± 15.1 (22) 99.2 ± 7.5 (30) 2.077
M: 111.7 ± 10.5 (28) 0.0875

Delay to first AP, ms F: 310.1 ± 27.0 (24) 381.5 ± 21.4 (31) 363.3 ± 20.5 (22) 365.5 ± 18.3 (30) 1.661
M: 344.1 ± 17.0 (28) 0.1629

AP threshold, mV F: 248.4 ± 1.7 (24) 250.6 ± 1.6 (31) 242.2 ± 2.3 (22) 250.1 ± 1.5 (30) 3.424
M: 245.8 ± 2.0 (28) 0.0107

AP width at half-peak amplitude, ms F: 2.6 ± 0.2 (24) 3.1 ± 0.1 (31) 2.9 ± 0.1 (22) 2.4 ± 0.1 (30) 4.643
M: 3.0 ± 0.2 (28) 0.0016

AHP peak amplitude, mV F: �7.6 ± 0.5 (24) �7.2 ± 0.4 (31) �6.9 ± 0.5 (22) �7.4 ± 0.4 (30) 1.500
M: �8.4 ± 0.4 (28) 0.2059

AHP time to peak, ms F: 33.5 ± 3.4 (24) 36.0 ± 3.0 (31) 29.8 ± 2.0 (22) 29.5 ± 1.9 (30) 2.003
M: 37.5 ± 2.3 (28) 0.0979

FI slope, Hz/nA F: 207.1 ± 24.2 (24) 178.9 ± 6.9 (31) 171.0 ± 14.2 (22) 224.8 ± 19.9 (30) 3.181
M: 157.9 ± 8.5 (28) 0.0157

Electrophysiological properties recorded from caudate-putamen MSNs from prepubertal female rats exposed to vehicle, PPT, DPN, or
G1 and males exposed to vehicle during the perinatal period. Values are means ± SE. Numbers in parentheses indicate the number of
neurons in each group (experimental n). Statistics column lists F and P values for one-way ANOVA analysis. Bold font indicates statisti-
cal significance. AHP, afterhyperpolarization; AP, action potential; F, female; FI, evoked firing rate-to-positive current curve; M, male;
mEPSC, miniature excitatory postsynaptic current.
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corresponds to a greater inwardly rectifying membrane
potential. Consistent with an impact on inward rectification
properties, DPN but not PPT exposure alsomasculinized per-
cent inward rectification in females (Fig. 8B). Percent inward

rectification is calculated as (linear range input resistance
minus the rectified range input resistance)/100. Thus, decrea-
sed percent inward rectification values correspond with a
greater inwardly rectifying membrane potential. A linear

Figure 7. Perinatal exposure to an ERb agonist decreased female MSN inward rectification to male levels. Linear range input resistance versus rectified
range input resistance plot. Females with perinatal exposure to vehicle displayed the greatest inward rectification. Males with perinatal exposure to vehi-
cle and females with perinatal exposure to the ERb agonist DPN displayed the least inward rectification. A linear regression analysis revealed that the
slopes between the calculated regression lines significantly differ (P< 0.0001). Linear range input resistance was calculated from the least hyperpolariz-
ing current pulse injected into the neuron that produces a reliable measureable change in steady-state membrane potential. Rectified range input resist-
ance was calculated from the steady-state membrane potential in response to the most hyperpolarizing current pulse injected into the neuron. A
nonrectifying neuron would exhibit identical linear range and rectified range input resistances and would fall on the nonrectified unity line (purple). A
neuron exhibiting inward rectification in its membrane potential in response to increasing hyperpolarizing current pulses would fall in the bottom half of
the plot, below the nonrectified unity line (mauve shading). ER, estrogen receptor; MSN, medium spiny neuron.

Figure 8. Perinatal exposure to an ERb agonist masculinized female MSN inward rectification. A: inward rectification was decreased in MSNs recorded
from females with perinatal exposure to the ERb agonist DPN and males with perinatal exposure to vehicle compared to MSNs recorded from females
with perinatal exposure to the ERa agonist PPT or vehicle. Inward rectification was calculated as the linear range input resistance minus the rectified
range input resistance. Thus, an increased inward rectification value corresponds to a greater inwardly rectifying membrane potential. B: percent inward
rectification was increased in MSNs recorded from females with perinatal exposure to the ERb agonist DPN and males with perinatal exposure to vehicle
compared to MSNs recorded from females with perinatal exposure to the ERa agonist PPT or vehicle. Percent inward rectification was calculated as (lin-
ear range input resistance minus the rectified range input resistance)/100. Thus, decreased percent inward rectification values correspond with a greater
inwardly rectifying membrane potential. C: linear regression analysis revealed that masculinization of percent inward rectification in females exposed to
DPN correlated with FI Slope values (P < 0.002), but not in females exposed to vehicle, PPT, and G1 (P > 0.05 for all). ER, estrogen receptor; FI Slope,
slope of the evoked AP firing rate to depolarizing current injection curve; MSN, medium spiny neuron. 	P< 0.05; 		P< 0.01.
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regression analysis revealed that DPN masculinization of
% inward rectification in females correlated with FI Slope
values, but not in females exposed to vehicle, PPT, and G1
[Fig. 8C; DPN: P = 0.0016; F(1,20) = 13.31; Vehicle: P =
0.2723; F(1,22) = 1.27; PPT P = 0.6202; F(1,29) = 0.25: G1: P =
0.2178; F(1,28) = 1.59]. This finding indicates that DPN
strongly influences both firing rate and inward rectifica-
tion in the same neurons, unlike other treatment groups.
This result is highly interesting given that these neuronal
attributes are typically controlled by different ion channel
mechanisms. Overall, these analyses is consistent with the
conclusion that changes in inward rectification induced
by DPN exposure and subsequent respective activation of
ERbmimic changes induced by estradiol exposure.

Perinatal Exposure to an ER Agonists Exert a Minimal
Impact on Male MSN Electrophysiological Properties

We hypothesized that if perinatal exposure to ERb or ERa
is masculinizing female MSN electrophysiological proper-
ties, then a comparable exposure inmales should exert a less
robust impact, given that inmale animals this process would
normally already be occurring. To test this hypothesis, male
rat pups were injected with either the ERa agonist PPT, the
ERb agonist DPN, or the GPER-1 agonist G1, and compared
to female and male pups injected with vehicle solution. No
differences were detected in the assessed battery of MSN
electrophysiological properties (Table 3). A trend was noted
regarding FI Slope (P = 0.0537), which is consistent with the

differences detected between vehicle male and female
MSNs (Table 3). Overall, exposure to PPT, DPN, or G1
exerted a minimal impact on male MSN electrophysiolog-
ical properties.

Perinatal Exposure to Estradiol Modulated mEPSC
Frequency

To assess whether perinatal estradiol exposure modulated
AMPA-mediated glutamatergic synapse properties, in a sub-
set of recordings mEPSC were recorded at �70mV in the
presence of tetrodotoxin and picrotoxin (Fig. 9A). Perinatal
estradiol exposure increased mEPSC frequency in both
females and males (Fig. 9B); however, post hoc statistical
tests did not detect significant differences between groups
(Table 1). No differences were detected in mEPSC amplitude
(Fig. 9C) or decay (Fig. 9D).

DISCUSSION
The experiments described in this manuscript make three

key findings. First, that estradiol exposure during the perina-
tal sensitive period is sufficient to masculinize female
caudate-putamen MSNs. Estradiol exposure decreased the
intrinsic excitability of female MSNs to levels observed in
male MSNs, as demonstrated by decreased evoked action
potential firing rates and other electrophysiological metrics.
Second, exposure to ERa and ERb agonists during the peri-
natal period mimicked the action of estradiol upon female

Table 3. Caudate-putamen medium spiny neuron electrophysiological properties from males exposed to PPT, DPN,
or G1 and females and males exposed to vehicle during the perinatal developmental period

Property Vehicle PPT DPN G1 Statistics (F, P)

Resting membrane potential, mV F: �82.8 ± 1.7 (24) �86.1 ± 1.8 (25) �83.5 ±2.0 (26) �81.6 ± 3.0 (30) 0.740
M: �84.2 ± 1.3 (28) 0.5665

Input resistance, MX F: 260.2 ± 26.9 (24) 279.3 ± 25.8 (25) 270.9 ±21.6 (26) 247.5 ± 28.0 (17) 0.405
M: 245.2 ± 15.3 (28) 0.8046

Rectified range input resistance, MX F: 200.1 ± 13.7 (24) 219.8 ± 12.5 (25) 226.6 ± 17.5 (26) 208.6 ± 19.4 (17) 0.498
M: 209.6 ± 12.2 (28) 0.7371

Inward rectification, MX F: 62.7 ± 14.8 (24) 59.5 ± 16.4 (25) 44.2 ± 7.0 (26) 39.0 ± 11.9 (17) 1.138
M: 35.5 ± 4.7 (28) 0.3423

% Inward rectification, % F: 82.2 ± 2.8 (24) 82.8 ± 2.5 (25) 84.7 ± 2.1 (26) 86.2 ± 2.0 (17) 0.769
M: 86.5 ± 1.5 (28) 0.5474

Time constant of the membrane, ms F: 16.6 ± 2.5 (24) 14.4 ± 1.5 (25) 15.0 ± 1.3 (26) 14.0 ± 1.7 (17) 0.591
M: 13.2 ± 1.0 (28) 0.6699

Capacitance, pF F: 61.6 ± 4.8 (24) 52.4 ± 2.7 (25) 58.6 ±5.3 (26) 59.7 ± 5.4 (17) 0.673
M: 54.9 ± 3.1 (28) 0.6117

Rheobase, pA F: 101.9 ± 12.8 (24) 107.1 ± 11.9 (25) 116.7 ± 13.9 (26) 130.2 ± 12.5 (17) 0.623
M: 111.7 ± 10.5 (28) 0.6473

Delay to first AP, ms F: 310.1 ± 27.0 (24) 327.3 ± 21.0 (25) 380.0 ±21.0 (26) 388.1 ± 28.9 (17) 2.049
M: 344.1 ± 17.0 (28) 0.0922

AP threshold, mV F: �48.4 ± 1.7 (24) �45.8 ± 2.0 (25) �47.3 ± 1.8 (26) �47.0 ± 2.2 (17) 0.294
M: �45.8 ± 2.0 (28) 0.8817

AP width at half-peak amplitude, ms F: 2.6 ± 0.2 (24) 2.6 ± 0.1 (25) 2.7 ±0.2 (26) 2.6 ± 0.2 (17) 0.962
M: 3.0 ± 0.2 (28) 0.4312

AHP peak amplitude, mV F: �7.6 ± 0.5 (24) �6.9 ± 0.3 (25) �7.5 ±0.5 (26) �7.2 ± 0.3 (17) 1.797
M:�8.4 ± 0.4 (28) 0.1341

AHP time to peak, ms F: 33.5 ± 3.4 (24) 32.1 ± 2.3 (25) 33.0 ± 1.8 (26) 33.4 ± 3.0 (17) 0.749
M: 37.5 ± 2.3 (28) 0.5606

FI slope, Hz/nA F: 207.1 ± 24.2 (24) 229.2 ± 26.0 (25) 185.7 ± 11.0 (26) 186.4 ± 10.1 (17) 2.409
M: 157.9 ± 8.5 (28) 0.0533

Electrophysiological properties recorded from caudate-putamen MSNs from prepubertal male rats exposed to vehicle, PPT, DPN, or G1
and females exposed to vehicle during the perinatal period. Values are means ± SE. Numbers in parentheses indicate the number of neu-
rons in each group (experimental n). Statistics column lists F and P values for one-way ANOVA analysis. AHP, afterhyperpolarization;
AP, action potential; F, female; FI, evoked firing rate-to-positive current curve; M, male; mEPSC, miniature excitatory postsynaptic
current.

SEXUAL DIFFERENTIATION OF CAUDATE-PUTAMEN NEURONS

2332 J Neurophysiol � doi:10.1152/jn.00063.2021 � www.jn.org
Downloaded from journals.physiology.org/journal/jn at North Carolina State Univ (152.007.255.194) on December 10, 2021.

http://www.jn.org


MSNs. Third, exposure to ERa and ERb agonists during the
perinatal period exerted a less robust impact upon male
MSNs.

Overall, these findings help generate an intellectual
framework wherein estradiol acts during the perinatal period
upon ERa and ERb to masculinize caudate-putamen MSN
electrophysiological properties, a process which would nor-
mally occur in males. Specifically, these data indicate a
working model in which testosterone secreted by the testes
is first converted into estradiol by the enzyme aromatase, ei-
ther in the striatum or elsewhere. Aromatase is present in all
three striatal regions (16, 48–52), although there are differen-
ces across development and striatal regions and aromatase
expression levels across adult hormone cycles have yet to be
extensively explored. Perinatal estradiol sensitivity appears
to be a characteristic of MSNs in both the caudate-putamen
(this manuscript) and the nucleus accumbens as well as
investigated select striatal-mediated behaviors (22, 24, 53–
55). At least in the caudate-putamen, estradiol then is
predicted to act on ERa and ERb to masculinize specific
MSN electrophysiological properties. ERa and ERb both
independently organize evoked action potential properties,
whereas ERb alone more predominantly organizes inw-
ard rectification and related properties. Regarding specific
action potential properties, perinatal estradiol exposure in
females appears to increase the AHP peak amplitude to levels

commonly measured in males, consistent with prior findings
that detected differences in AHP properties (21). The AHP
peak amplitude attribute typically corresponds with a metric
that other laboratory groups designate as the “fast afterhyper-
polarization” (sAHP) (56). Changes in this portion of the AHP
in MSNs suggest alteration of an A-type potassium current
(56), whereas changes in inward rectification suggest altera-
tion of an inwardly rectifying potassium current (56–60). Of
course, other ion channels such as calcium-activated potas-
sium channels could be at work, as demonstrated in both
MSNs and striatal cholinergic interneurons (61, 62). We also
note that the specific ionic mechanism generating the sex dif-
ference in evoked action potentials remains unexplored, as
discussed in a previous study (21).

We currently favor a straightforwardmodel, in which peri-
natal estradiol acts upon nuclear ERa and ERb localized in
MSNs. These nuclear ER then presumably dimerize and pro-
gram gene expression by acting on estrogen response ele-
ment (ERE) regions in the genome. After this action, nuclear
ER cease to be expressed by the MSN. In adulthood (and per-
haps before), estradiol would then play a classical activa-
tional role. This model is consistent with recent findings,
which demonstrate that nuclear ERa and ERb are present in
striatal neurons in male and female rats during the perinatal
period but disappear by puberty (16). This model also can
incorporate recent findings that show differences in
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Figure 9.MSN miniature excitatory postsy-
naptic current (mEPSC) properties from
females and males with perinatal exposure
to vehicle or estradiol. A: representative
examples of mEPSCs recorded at �70mV
in the presence of tetrodotoxin and picro-
toxin. B: an overall effect of perinatal estra-
diol exposure was detected for mEPSC
frequency. Post hoc statistical tests did not
detect statistical significance. C: no differ-
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caudate-putamen and nucleus accumbens MSN electrophys-
iological properties across the estrous cycle and in response
to acute estradiol exposure (26, 28, 30–32). Older work that
shows differences in caudate-putamen MSN electrophysio-
logical properties in response to either the estrous cycle or
acute estradiol exposure (9, 63, 64) is also concordant with
this model. Disambiguating whether sex differences in MSN
electrophysiological properties are generated in this cell-au-
tonomous process remains an important unanswered ques-
tion and future direction. Consistent with this prediction of
this working model, direct, cell-autonomous action of estra-
diol on female caudate-putamen MSN L-type calcium chan-
nel currents and CREB phosphorylation and male MSN
caudate-putamen synaptic plasticity have been demon-
strated in a rapid, acute timeframe (9, 11, 65). During the
perinatal period, female and male rat caudate-putamen
expresses at least nuclear ERa and GPER-1, as demonstrated
by immunocytochemical studies (16). The absence of a vali-
dated antibody has stunted research into the presence of nu-
clear ERb, especially during the perinatal period (66).
Mitigating this unfortunate situation, ERb and aromatase
mRNA have been detected in female and male mouse cau-
date-putamen during the perinatal and fetal developmental
periods (67, 68). Nuclear expression of ER declines after the
perinatal period (16). ERa, b, and GPER-1 are detectable by
electron microscopy studies, qPCR, and functional analysis
in adult rat caudate-putamen, with evidence pointing to-
ward membrane and cytoplasmic localization in MSNs and
glia (9–15, 69). Immunocytochemical studies do not typically
detect ERa in the adult rat caudate-putamen (12), potentially
due to lower expression (70) or the blockade of the relevant
epitope by plasma membrane. Many brain regions that pro-
ject to the caudate-putamen express estrogen receptors (70),
so a non-MSN cell autonomous mechanism remains an im-
portant potential, especially given previous evidence of such
a mechanism from studies of songbirds (71–74). Cell autono-
mous and noncell autonomous neuroendocrinemechanisms
are not mutually exclusive and may differ by developmental
stage and neuron target.

GPER-1 is also present in both male and female caudate-
putamen, but the current study did not generate evidence
that GPER-1 organizes the assessed electrophysiological
attributes. This lack of effect is perhaps consistent with
GPER-1 not yet being expressed at the neuronal plasma
membrane during the perinatal period (16). However, GPER-
1 could potentially play a role in sexual differentiation in
other metrics (75), and a modulatory role in adults. We also
note that this current model does not preclude ER activation
on other cell types either within or outside the striatum,
which could then indirectly organize MSN properties. There
is also evidence that direct chromosomal action may influ-
ence striatal neuron sexual differentiation, at least in terms
of select dopamine receptor gene expression (76). Although
particular details of this proposed model may ultimately
turn out to be or to not be correct, overall, the data presented
here demonstrate that caudate-putamen MSNs can be sexu-
ally differentiated by exposure to estradiol and its receptor
agonists, which has profound implications for sex-sensitive
caudate-putamen-mediated functions and disorders in
adulthood. Importantly, the influence of steroid hormones
such as estradiol in masculinizing the caudate-putamen

reveals a potential vulnerability of caudate-putamen-rele-
vant behaviors and disorders to the effects of endocrine
disruption.

Pertinent limitations to this study exist. Caudate-putamen
MSNs exhibit multiple subtypes, which were not addressed
by the current study. MSN subtypes can differentially
express D1 and D2-dopamine receptors and exhibit subtle
differences in electrophysiological and dendritic properties
(25, 29, 77, 78). Although at this point there is no evidence
demonstrating differences in ER expression between MSN
subtypes, it has not been ruled out that the MSN subtypes
could be differentially sensitive to estradiol action during
any developmental period. Other limitations also exist.
Regarding the effects of ER agonists on males, it is possible
that subtle effects of exposure to these compounds in males
were not detected due to insufficient statistical power. Thus,
we have conservatively interpreted the present study as ER
agonists inducing “minimal” or “less robust” impact upon
males compared to similar exposure in females, rather than
these compounds having “no effects.” Another limitation is
that the current study was intentionally designed to address
whether estradiol and its receptors was sufficient rather than
necessary for MSN masculinization, particularly in females.
Future studies will be required to assess the necessity of es-
tradiol and its receptors by blocking ER and perhaps aroma-
tase action in perinatal and perhaps fetal males. This
consideration is particularly pertinent, as perinatal estradiol
exposure in males appears to increase MSN excitability, per-
haps indicating paradoxical hyperfeminization (Fig. 2), a
concept similar to that pioneered by studies in songbird
model systems (79). This finding would seem to indicate that
exogenous estradiol exposure, perhaps layered on top of the
natural perinatal testosterone surge, may have an additional
action inmales. Testosterone can bemetabolized into 17b-es-
tradiol via the enzyme aromatase in the male rat brain. This
metabolic action could be due to numerous mechanisms,
given the complexity of brain sexual differentiation (80).
One straightforward optionmay be that there is simply addi-
tional activation of ER, either the same ER normally activa-
tion by the natural hormone surge, or ER not normally
activated by the natural hormone surge, which induces this
effect. Normal sexual differentiation of the caudate-putamen
may involve activation of both androgen and estrogen recep-
tors, along with chromosomal action (76). We note that this
study employed systemic exposures, so as discussed above it
is possible that ER outside ofMSNsmay also be participating
in organizing MSN electrical properties. This study was also
not designed to differentiate between nuclear and mem-
brane ER action, as ERa and ERb can exist both nuclear and
membrane form due to posttranscriptional modification (81,
82). At this point, it is well documented that nuclear ER are
present in perinatal rat striatum, and that only membrane
ER are present in adult rat striatum. It is not clear whether
membrane ER are already present during the perinatal pe-
riod, or if membrane ER emerge concurrent with or after the
disappearance of nuclear ER. There is evidence from hippo-
campal neurons that estrogen action during the perinatal pe-
riod can program membrane ER signaling from the plasma
membrane (83). Future studies employing the use of biotin-
ylated estradiol infusions or perhaps more sophisticated
techniques could address whether estradiol is acting on
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nuclear or membrane ERa and ERb to organize striatal neu-
ral substrate.

These data join previous work demonstrating that MSN
excitability and excitatory synapse properties differs by sex
in developmental-stage-specific, region-specific, sex-spe-
cific, and an estrous cycle-dependent manner (84). Most rel-
evant to the current study, previously we and others have
shown that perinatal estradiol exposure sexually differenti-
ates MSNs in the nucleus accumbens core (22, 24). The
experiments described in the current manuscript advance
this body of research by demonstrating that perinatal estra-
diol exposure likewise sexually differentiates caudate-puta-
men MSNs, and that these effects are mimicked by exposure
to ERa and ERb agonists. Although estradiol during the
perinatal period masculinizes MSNs in both the caudate-
putamen and nucleus accumbens core, estradiol exerts
differential effects upon specific MSN electrophysiological
properties dependent upon striatal region. In the caudate
putamen, female rat prepubertal caudate-putamen MSNs
exhibit increased intrinsic excitability compared to male
MSNs, as primarily demonstrated by increased evoked
action potential firing rates in response to injected excita-
tory current (21).

Caudate-putamen MSNs specifically exhibit this sex differ-
ence, as it is not present in MSNs in nucleus accumbens shell
and core (22, 23). In contrast, prepubertal rat nucleus accumbens
core MSNs exhibit a sex difference in excitatory synapse proper-
ties, specifically a dramatic elevation in mEPSC frequency in
female compared to males (22). Elevated mEPSC frequency in
female nucleus accumbens core MSNs is masculinized by peri-
natal exposure to estradiol; however, intrinsic excitability prop-
erties such as evoked action potential frequency remains
unchanged (22). It is unknown which ERs mediate nucleus
accumbens core MSN masculinization, and this gap in knowl-
edge is a critical omission given the importance of the nucleus
accumbens in regulating motivated behaviors. The sex differen-
ces detected in rat caudate-putamen and nucleus accumbens
core are either absent or less robust in inbred mice MSNs
assessed during the same prepubertal developmental period, at
least in the assessed strains (25, 29). The caudate-putamen and
nucleus accumbens are both altered during the pubertal devel-
opmental period (85–89). After puberty, intrinsic excitability in
adult rat female caudate-putamen MSNs are regulated by the
estrous cycle (32). In the nucleus accumbens core, after puberty,
mEPSC frequency, amplitude, and intrinsic excitability proper-
ties are regulated by the estrous cycle in female rats (26). In adult
animals, select nucleus accumbens core MSN properties appear
to bemore tightly regulated by estradiol and some by progester-
one (30, 31). Indeed, acute estradiol exposure rapidly modulates
mEPSC frequency in adult female MSNs in the nucleus accum-
bens but not caudate-putamen (28).

One interesting question generated by the present study
regards whether perinatal exposure to estradiol is changing
synapse number onto caudate-putamenMSNs. Although the
direct answer to this question remains unknown, the mEPSC
frequency data presented in this manuscript are relevant
(Fig. 8B). This mEPSC recording paradigm specifically tar-
gets AMPAmediated events (26). Perinatal exposure to estra-
diol increased mEPSC frequency in both female and males.
There was no sex difference in either vehicle- or estradiol-
treated animals, consistent with a previous study in this

developmental age and striatal region (21). Differences in
mEPSC frequency are typically associated with changes in
the presynaptic terminal such as synapse number or vesicle
release properties concomitant with calcium sensitivity.
Thus, we conservatively conclude that the exogenous perina-
tal estradiol exposure employed here regulates presynaptic
properties, but it does notmimic the natural neuroendocrine
process given that no sex differences in mEPSC frequency
has been detected in prepubertal caudate-putamen. At least
two caveats exist for this conclusion. The first is that the
imbalance in sample size between experimental groups in
the mEPSC portion of the current study. The second caveat
is that sex differences in spontaneous EPSCs have been dif-
ferentially detected between different regions of the cau-
date-putamen in adult mice (90), indicating that there may
be portions of the caudate-putamen that may exhibit
increased sexual differentiation and potentially estradiol-
sensitivity compared to other portions. In adult rat caudate-
putamen, no differences specifically in mEPSC properties
have been detected across the estrous cycle (32), unlike in
the nucleus accumbens (26, 30, 31).

This divergent sensitivity to estradiol further indicates strong
regional differences in the neuroendocrine profile of particular
electrophysiological properties of MSNs. Consistent with this
model are reports of aromatase-sensitive synaptic plasticity in
male caudate-putamenMSNs (65), in calcium channel currents
(9), CREB phosphorylation (11), DeltaFosB expression (91), as
well as numerous reports of regional differences in sex- and
hormone-specific modulation of MSN microanatomy such as
dendritic spines (20, 92–98). Overall, the evidence provided by
both the findings in this study and those of previous studies
indicate that the striatal region’s principal and output neuron,
the MSN, must be considered sexually differentiated. It is
expected that the MSN is not unique in this regard. Sustained
foundational research into other neuron types across varying
regional, developmental, and neuroendocrine contexts will
likely further demonstrate the malleability of fundamental cel-
lular electrophysiological properties in response to the dynamic
neuroendocrine environment of the nervous system.
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